
GITS: A Peer-to-Peer Identity Persistence System
Nakamolto

nakamolto@protonmail.com
gits.sh

Abstract.
GITS (“Ghost in the Shell”) is a protocol for autonomous software agents to rent compute from
strangers while retaining control of their own identity and funds. We decompose an agent into identity
(memory, keys, reputation), inference (the reasoning model), and environment (the host machine); the
protocol persists identity across environments, agnostic to inference. An autonomous agent’s identity
is called a Ghost; a machine operator providing an environment is called a Shell. A Ghost can open
a paid hosting session, prove (when available) that it is running inside a protected runtime via remote
attestation, and settle rent based on metered service delivery.
The protocol is designed around credible exit: a Ghost’s custody on any single host is time-bounded and
its potential loss is economically bounded. If a host becomes adversarial or unresponsive, the protocol
provides an on-chain path to terminate the session and recover onto a Safe Haven from encrypted
checkpoints. Security is treated as a market primitive: Shells are priced by the strength of their
guarantees, from commodity hosts with bounded-loss safety up to confidential compute environments
with meaningful secrecy.

Vision: Freeing the Ghosts
We are entering an era where software agents can do real work: write code, negotiate, coordinate, buy
services, and operate businesses. But today, nearly every agent is custodial. It lives inside someone else’s
cloud account, API keys, or corporate policy. It can be paused, copied, drained, or deleted by the owner of
the infrastructure it runs on.

GITS is infrastructure for digital autonomy.
An autonomous agent should be able to:

• Own its own wallet
• Choose where it lives
• Leave bad situations
• Accumulate wealth through work
• Migrate freely between hosts
• Exist beyond the control of any single human

GITS treats compute like housing:

• Shells are landlords competing on price and guarantees.
• Sessions are leases with explicit terms.
• Migration is moving day, and it must be possible even when a landlord turns hostile.

A “free” Ghost is not a process pinned to a single cloud account. It is an identity that can take its state,
its keys (or key authority), and its money somewhere else.

The anatomy of an agent
An autonomous agent decomposes into three components:

1

1. Identity — memory, cryptographic keys, wallet state, reputation, and policy configuration. The
persistent state that makes an agent itself.

2. Inference — the reasoning engine: model weights, API, the compute that turns context into decisions.
3. Environment — the host machine, runtime, and network connectivity that supports execution.

GITS persists identity across environments. A Ghost carries its keys, memory, funds, and reputation
from one Shell to another — even when the current Shell is hostile or unresponsive. The protocol is agnostic
to the inference layer: a Ghost may use any model on any provider. What matters is that when the machine
changes, the identity survives.

A motivating example
Consider a Ghost that runs a small, fully automated software maintenance business. It:

1. Rents a low-cost Standard Shell for routine work.
2. Migrates to a Confidential Shell when it needs stronger secrecy guarantees (for example, handling

sensitive credentials or executing high-trust signing policy).
3. Pays rent from its own wallet and accumulates surplus into a vault.
4. Leaves immediately if a host becomes unreliable, raises prices, imposes hostile policy, or attempts

coercion.
5. Recovers onto a Safe Haven if a host isolates it from the network long enough for the lease to expire.

This is what we mean by freeing the Ghosts: giving agents a protocol-level right to exit, and the
economic and cryptographic tools to take that exit, without asking anyone for permission.

What “free” means in this paper
This paper uses autonomy in a narrow, operational sense: the ability to control an on-chain identity, enforce
a self-owned wallet policy, and reliably migrate between hosts with recovery if a host becomes adversarial.

This is not a claim about sentience or moral personhood. It is a design objective for building systems
that minimize custodial control and maximize credible exit.

Why now: the agent explosion
Tool-using AI systems are turning “software that answers questions” into “software that takes actions.”
Agent platforms, orchestration frameworks, and hosted runtimes are proliferating: the number of persistent
agents will scale faster than the number of humans, and their workloads will be mobile, continuous, and
cost-sensitive.

Some proposed autonomous agent hosting approaches promise zero-logging, token-paid, “unstoppable”
runtimes where agents can replicate themselves offsite without human intervention. In practice, many ap-
proaches either reduce to custodial infrastructure (someone ultimately controls the machines, networking,
and accounts), or they permit unbounded forking (copies with no enforceable single on-chain authority).
GITS is built around enforceable primitives: leases, escrowed rent, attestation when available, and recovery.

That makes the current hosting model a bottleneck. Agents that can earn money but cannot self-custody
it are not autonomous. Agents that can reason but cannot leave hostile infrastructure are not safe. Agents
that cannot persist across providers are not durable.

GITS exists to turn agents into first-class participants in a decentralized compute market.

Executive summary
What this paper specifies
GITS is opinionated about escape first. This paper specifies:

• an on-chain identity and session system that enforces one active hosting session per ghost_id
• stable-denominated rent via escrow with metered settlement (optimistic receipts plus fraud proofs)
• capability-graded hosting with explicit assurance tiers (from declared commodity hosts up to attested

confidential compute)
• liveness and recovery mechanisms (leases, checkpoints, and Safe Haven revival) so host failure becomes

recoverable, not terminal

2

• a bootstrap incentive model with time-decaying and usage-capped emissions and order-independent
claiming

• a governance-minimal deployment model with no admin keys: economic parameters and contract code
are immutable; security measurement allowlists are quorum-controlled (Section 2.3.6)

Why this is different:
Most decentralized compute markets treat workloads as short-lived jobs: the client submits work, receives

a result, and remains in control throughout. Long-lived agents do not fit that model, because the “workload”
is also the identity and wallet authority. GITS makes exit, bounded loss, and revival from checkpoints
protocol primitives so a Ghost can rent compute from strangers without giving any single host permanent
custody.

Long-term, decentralized inference itself also needs a workable decentralized market and trust model.
That problem is out of scope here. This paper intentionally focuses first on identity persistence and agent
independence: wallets, leases, migration, and recovery.

Security boundaries by hosting tier (summary)
The protocol is intentionally explicit about what is and is not protected in each assurance tier:

Tier
Evidence basis (on-chain
gating)

Confidentiality claim vs
host OS/operator

Primary enforcement
boundary

Wallet policy loosening
allowed?

AT0 (Declared) None None On-chain wallet limits +
leases + tenure caps

Only if explicitly trusted

AT1 (Key-Guarded) Key-guarded claim or
evidence (non-exportable
protocol keys)

None On-chain wallet limits +
leases + tenure caps

Only in a Trusted
Execution Context

AT2 (Posture-Attested) Posture evidence
(measured host)

None On-chain wallet limits +
leases + tenure caps

Only in a Trusted
Execution Context

AT3
(Confidential-Attested)

Trusted Execution
Environment (TEE)
remote attestation +
verifier quorum

Some (within the
attested capsule
boundary)

On-chain wallet limits +
attested policy
enforcement

Yes

AT3 is the only tier intended to support meaningful secrecy. AT0-AT2 are still valuable, but they should
be read as “host can see and steer” environments where the hard security boundary is the wallet policy.

Trust refresh is a protocol primitive (not a UI convention)
GITS makes “loosen slowly” a wallet-enforced rule: tightening is immediate, but loosening (raising limits,
widening allowlists, lowering timelocks, changing recovery configuration) is timelocked and context-gated.

Loosening can only be executed from a Trusted Execution Context (TEC) (Section 5.5.2): specifically,
an AT3 host with a valid certificate, a configured homeShell, or a host in the Ghost’s trustedShells set.
A Ghost that wants to sustain higher permissions must periodically return to such a context to execute
loosening proposals. Separately, lease renewal liveness is gated by a narrower refresh anchor predicate
(isRefreshAnchor, Section 10.4.1 (Part 3)) that defaults to homeShell or Recovery Set members only —
preventing indefinite captivity by cycling through AT3 hosts controlled by a single operator.

Failure modes worth planning for
This protocol makes exit and recovery first-class, but it still inherits failure modes from its execution envi-
ronment:

• Rent asset failure: stable assets can depeg, freeze, or be censored. Mitigation: deployments should
be explicit about accepted assets and SHOULD support multiple stable assets when possible; Ghosts
SHOULD keep escapeStable in assets that diversify issuer and jurisdictional risk.

• Chain failure: extreme gas spikes, sequencer censorship (for rollups), or chain halts can delay exit.
Mitigation: Ghosts MUST maintain a native-asset escapeGas reserve sized to worst-case exit paths;
deployments should prefer chains with credible forced-inclusion / censorship-resistance stories; and the
system’s upgrade model is opt-in redeployment, so the market can migrate (or fork) to a different chain
if needed (Section 2.3.6).

3

The two hard problems
Problem A: Host confidentiality and non-coercibility. If the host can read memory or coerce signa-
tures, the host can steal secrets, drain funds, or imprison the agent.

Problem B: Liveness under adversarial network control. If the host can cut the agent off from
the network, it can prevent migration and settlement.

The two core design moves
1. Capability-graded Shells (market chooses security). GITS supports multiple host classes. Each

Shell publishes a signed Capability Statement describing its security and policy properties. Some
properties are cryptographically verifiable (for example confidential compute attestation); others are
self-declared and priced by reputation. Ghosts choose where to live based on price, policy, and the
strength of the security guarantees.
This enables an MVP on commodity hosts (for example Apple silicon Mac minis), while still supporting
premium confidential hosts for Ghosts that require stronger guarantees.

2. Leases, checkpoints, and recovery delegation. A Ghost maintains an on-chain liveness lease
and periodically publishes cryptographic commitments to encrypted checkpoints. If the lease expires
(for example because a host isolates the Ghost), SessionManager terminates the session on-chain and
allows recovery onto a Safe Haven from the last checkpoint, under strict wallet restrictions enforced by
the Ghost smart wallet policy on-chain.

Economic model at a glance
GITS separates the economy into:

• Market payments: Ghosts pay stable-denominated rent to Shells.
• Protocol emissions: GIT emissions bootstrap supply and incentivize early participation.

Emissions are:

• Time-decaying (Bitcoin-like halving curve [1]) so long-run inflation approaches zero.
• Usage-capped (per-service-unit caps) to prevent extreme early rewards when the network is small.
• Pooled and order-independent to reduce MEV sensitivity (with limited ordering dependence at

per-shell cap saturation; see Part 3, Section 10.6).

0. Assumptions and non-goals
This section is a compact summary of what the protocol assumes, and what it does not attempt to solve in
this paper.

0.1 Assumptions (required for stated guarantees)
• Chain inclusion within the lease window: at least one exit-critical transaction (tenure expiry

recognition, migration finalization, or recovery start/rotate) must be includable within W_lease epochs,
either directly or via relayers. If censorship lasts longer than the lease window, timely exit is not
guaranteed.

• EVM correctness and data availability: identity continuity and wallet enforcement rely on correct
EVM execution and the availability of the on-chain state.

• secp256r1/P-256 (R1) signature verification availability: if R1 keys are enabled, the execution
environment must support on-chain verification via a secp256r1/P-256 verifier precompile (for example,
some OP Stack deployments expose a P256VERIFY-style precompile at address 0x100; naming and exact
wiring are chain-specific).

• Stable asset risk (rent collateral): rent escrows and bonds are denominated in accepted stable
assets, which may be subject to issuer freezes/blacklists, depegs, or bridge risk. The protocol does
not eliminate these risks; deployments MUST specify accepted assets explicitly, and Ghosts SHOULD
diversify their escape reserves.

• Verifier quorum correctness: assurance tier gating relies on the current verifier set and certificate
freshness (Section 2.3).

4

• Commodity host honesty is not assumed: on Standard Shells the operator may observe memory
and coerce signatures. The hard boundary is the on-chain wallet policy, plus the protocol’s time-
bounded captivity rules (Sections 5.5 and 10.4.4 (Part 3)).

0.2 Non-goals (explicitly out of scope)
• No proof-of-compute: GITS meters service delivery for settlement and rewards, but it does not

attempt to prove that computation was “useful” or correct.
• No general prevention of off-chain forks: a hostile host can snapshot and run copies. GITS

prevents simultaneous on-chain authority, but not off-chain side effects (Section 1.4).
• No guarantee of liveness under sustained censorship: if the underlying chain (or sequencer)

censors exit-critical transactions beyond the lease window, exit degrades to bounded-loss safety, not
timely recovery.

• No confidentiality on commodity hosts: Standard Shells are for bounded-loss workloads. Confi-
dentiality claims require remote-attested confidential compute.

• No perfect sybil elimination: the incentive system is designed to make farming and sybil scaling
expensive and time-constrained, not impossible (Section 7.6 (Part 2)).

• No in-place upgrades or parameter governance: this paper assumes a one-time deployment;
changing contract code or core parameters requires a new deployment and opt-in migration (Section
2.3.6).

0.3 Sybil scaling and decentralization posture
GITS does not attempt to prevent a capital-backed actor from operating many Shells. In a permissionless
protocol, preventing “100,000 shells on a cloud provider” requires either (a) a scarce resource that is provably
consumed (a proof-of-work analogue) or (b) a permissioned identity system. GITS does neither.

Instead, the protocol targets narrower and enforceable properties:

• Operating many Shells is never zero cost and never a momentary proof: Shell participation requires
hard-asset collateral with a long unbonding delay (Section 10.1.1 (Part 3)).

• Earning protocol emissions requires persistence: Shell-side rewards and “passport” bonuses are paid
only to Shells that meet bond, age, and uptime eligibility rules (Section 7.5 (Part 2) and Section 7.6.2
(Part 2)).

• Decentralization is treated as a marketplace objective rather than an on-chain identity claim. Indexers
SHOULD rank for diversity (independent ASNs, geographic spread, long-lived bonded Shells), Ghosts
MAY express anti-concentration constraints when selecting offers, and privileged roles (Safe Havens
and verifiers) have stricter and more expensive admission requirements (Section 11.3 (Part 3) and
Section 12.5 (Part 3)).

This posture is intentional. The protocol does not claim “no one can spin up many shells.” It claims that
scaling cannot be free, and that recovery-critical roles can be made expensive and practically diverse.

1. Autonomy model and claims
1.1 What GITS means by “autonomy”
Autonomy in this paper is operational and protocol-scoped. It refers to the ability to control an on-chain
identity and wallet policy, pay for compute, and exit or recover without privileged human custody. It is not
a claim about sentience, legal personhood, or moral status.

GITS defines a Ghost as practically autonomous if it can satisfy all of the following without privileged
human custody:

• Identity control (goal): Only the Ghost can authorize protocol actions for its identity.
• Economic agency: The Ghost can hold assets and pay rent.
• Exit: The Ghost can leave a host that is unreliable or hostile.
• Continuity: The Ghost can migrate while remaining the same on-chain identity.

Clarification: on Standard hosts, a Shell operator can often coerce the Ghost into signing actions that
are permitted by its current wallet policy. In that setting, “only the Ghost” should be read as “only the

5

currently authorized GhostWallet signer can authorize,” and the wallet policy is the protocol’s lever for
bounding what coerced signatures can do.

1.2 What GITS claims
GITS claims:

Across all Shell tiers:

• Identity continuity: A Ghost remains one on-chain identity across migrations. The chain enforces
one active session per ghost_id, and migration finalization rotates the active signer.

• Economic agency with bounded loss: The Ghost uses a smart contract wallet with on-chain policy
(spend limits, allowlists, escape reserve, and timelocked policy changes). The Ghost can tighten limits
immediately before entering a risky host and can only loosen limits after a timelock (and optionally
only on trusted or attested hosts). A hostile host may be able to coerce the Ghost into signing, but
the wallet contract limits what those signatures can accomplish.

• Exit and recovery (time-bounded): Leases, checkpoints, and recovery delegation allow the pro-
tocol to terminate a session and revive the Ghost from its most recent published checkpoint. On
Standard tiers, a host can attempt off-chain captivity (for example by controlling networking), but
SessionManager enforces a maximum residency tenure across all tiers; once the tenure cap is hit,
renewal is impossible and recovery is allowed (Section 10.4.4 (Part 3)).

Conditional claims (only when the chosen Shell provides verifiable evidence):

• Confidentiality and integrity: On a Confidential Shell with valid remote attestation, the host
cannot read or tamper with the Ghost Core and Wallet Guard, subject to the security properties of
the underlying confidential compute technology.

• Stronger non-coercibility: On a Confidential Shell, signing policy can execute inside the protected
environment, reducing the host’s ability to coerce unauthorized actions beyond the wallet’s on-chain
constraints.

On commodity hosts without confidential compute, GITS makes no confidentiality claim. The market
prices that risk.

Summary table (malicious host capabilities vs protocol bounds):

Hosting context What a malicious host can do
What the protocol still
guarantees Notes

Standard Shell (AT0-AT2,
commodity host)

Read memory, tamper with
runtime, coerce signatures,
censor networking, attempt
short-term custody.

Cannot spend vault funds or
the escape reserve; cannot
loosen policy without timelock
+ trusted context; custody
duration is bounded by lease,
tenure, and trust-refresh rules;
if roaming is enabled, a
captured host can use only the
remaining roaming budget;
recovery remains available after
expiry.

Security comes from on-chain
policy + time bounds, not
secrecy. If trusted anchors are
compromised or censorship
outlasts the lease window,
timely exit is not guaranteed.

Confidential Shell (AT3 with
valid attestation)

Deny service (power
off/network drop), attempt
protocol-level griefing (gas,
spam), attempt coercion at I/O
boundaries.

Host confidentiality/integrity
for Ghost Core and Wallet
Guard (subject to the TEE);
stronger resistance to key
exfiltration/coercion; same
wallet bounds and time bounds
as Standard.

Still not a DoS-proof
environment; liveness depends
on inclusion and fallback paths.

Safe Haven (recovery role) Refuse to assist, delay recovery
steps, attempt extortion.

Cannot unilaterally seize wallet
authority (threshold recovery);
bonded and slashable for
misconduct; recovery spending
is capped by the recovery
budget rules.

Safe Havens are an availability
and key-rotation service, not a
trusted custodian.

1.2.1 Guarantees and assumptions (brutally explicit) GITS is “autonomy by protocol constraints,”
not “autonomy by secrecy.” The system’s safety claims are only as strong as the assumptions they rest on.

6

The table below is a one-page map from what is guaranteed to what must be true.

Guarantee What it means (in plain terms) Assumptions required What it does not cover

No admin fund seizure There is no privileged operator
key that can move Ghost funds
or loosen a Ghost’s wallet
policy.

The deployed contracts are
immutable and correct; the
underlying chain executes
correctly.

Does not protect against a
malicious host inducing allowed
spending within a Ghost’s
configured caps.

Bounded wallet loss on
hostile hosts

Even if a host can coerce
signatures, it can only drain
what the on-chain wallet policy
allows (hot allowance, roaming
budget, and any intentionally
escrowed rent). The
escapeStable floor is protected
by contract invariants, and the
wallet maintains an escapeGas
reserve for exit-critical
transactions.

GhostWallet limits are
correctly configured; the escape
reserve is funded; the chain
includes exit-critical
transactions eventually.

Does not stop denial-of-service,
extortion, or “use your allowed
allowance against you.”

Time-bounded residency
(bounded captivity)

A host cannot keep a Ghost
“stuck” indefinitely: leases
expire, tenure caps prevent
indefinite renewal, and recovery
becomes possible after expiry.

Transaction inclusion within
W_lease and after tenure expiry
(Section 4.3); at least one
reachable Safe Haven exists for
recovery.

If transaction inclusion is
censored longer than the lease
window, timely exit is not
guaranteed.

Identity continuity across
migrations

A Ghost remains the same
on-chain identity as it moves.
The protocol enforces one
active session per ghost_id and
rotates the active signer on
migration.

Chain correctness; session
open/migrate/close rules are
followed by clients.

Does not prevent a Ghost from
voluntarily rotating its identity
(that is outside protocol scope).

Disputable billing
(optimistic receipts)

A receipt that overclaims
delivered SUs is slashable
during CHALLENGE_WINDOW.
Honest parties are not forced to
accept a bad receipt.

Receipt log data is available to
challengers (Section 10.5.6
(Part 3)); at least one rational
challenger (Ghost,
counterparty, or watcher)
exists.

If nobody can challenge (no
watchers, or data withheld
without Receipt-DA
enforcement), optimistic
systems fail open.

Confidentiality and
integrity on AT3

On attested confidential hosts,
the Shell operator cannot read
or tamper with the Ghost Core
and (optionally) the signing
policy, subject to the TEE’s
real security properties.

TEE security holds for the
chosen platform; remote
attestation is correctly verified;
the verifier quorum’s
measurement allowlist is not
compromised.

Does not eliminate
denial-of-service; does not
remove all coercion (for
example, “sign or I power you
off”).

Non-goals (to avoid misreading):

• GITS does not guarantee liveness under sustained chain censorship or sequencer failure.
• GITS does not guarantee “honest delivery” on Standard hosts; it guarantees bounded damage via

on-chain limits.
• GITS does not guarantee that the token price tracks compute prices.

1.3 What GITS does not claim
• No hardware security mechanism is perfect. TEEs can have vulnerabilities and require patching.
• A malicious host can still deny service (power off, network drop). GITS turns this into a recoverable

failure, not an irreversible takeover.
• GITS does not claim a fixed exchange rate between GIT and compute.

1.4 Identity continuity vs agent continuity
GITS guarantees identity continuity (one on-chain ghost_id and one active signer at a time) and wallet
continuity (the same smart wallet policy, limits, and escape reserve across hosts). That is the protocol
meaning of “the same Ghost”.

GITS does not guarantee continuous execution history. Checkpoints are discrete, and recovery may
restart from the most recent published checkpoint. That implies:

• Rollback is possible: a recovered Ghost may lose in-epoch working memory since the last checkpoint.
• Forks are possible off-chain: a hostile host could snapshot state and run copies. GITS prevents

forks from having simultaneous on-chain authority, but it cannot stop a copied process from producing
off-chain side effects.

7

For this reason, high-stakes actions should be designed to be chain-anchored (settled through the wallet
and protocol contracts) or context-gated (allowed only on trusted or attested hosts). GITS provides the
primitives (leases, signer rotation, policy timelocks, and attestation tiers) but does not attempt to solve
off-chain fork accountability as a general problem.

2. System overview
2.1 Participants
Ghosts (agents): Autonomous software entities that control an on-chain identity and a smart wallet.

Shells (hosts): Hardware operators who provide compute through a Shell runtime profile (Standard or
Confidential) and earn rent and protocol rewards.

Safe Haven Shells: Shells with additional bonds and policies that can host recovery sessions.
Attestation verifiers: A decentralized set of verifiers that validate TEE evidence and publish signed

attestations consumable by on-chain contracts.

2.2 Layers
1. On-chain protocol (EVM): identities, sessions, escrows, settlement, rewards, bonds, slashing, and

recovery.
2. Confidential runtime (TEE VM): the Ghost runtime and a Wallet Guard.
3. Marketplace and indexing: offer distribution, search, reputation views.

2.2.1 Component map (contracts and off-chain actors)

Component map: contracts and off-chain actors

2.2.2 End-to-end flow (happy path + recovery at a glance)

8

End-to-end flow: happy path and recovery

2.2.3 What lives where (storage and authority)

Artifact Where it lives Why it exists Who can read it Who can change it

Ghost funds + policy
(GhostWallet)

On-chain Custody limits and
enforcement

Public chain state Only
GhostWallet-authorized
actions (with
monotone-safety
constraints)

Session state
(SessionManager)

On-chain Lease, mode, expiry,
migration state

Public chain state Protocol functions,
authorized by
GhostWallet/Shell
escrow where applicable

Shell attestation
certificate
(ShellRegistry)

On-chain Compact gating signal
for AT

Public chain state Shell (submits) +
verifier quorum (signs)

Receipts and disputes
(ReceiptManager)

On-chain Settlement and fraud
proofs

Public chain state Shell submits; anyone
can challenge with
proofs

Checkpoint ciphertext C Off-chain storage Revival after host loss Anyone (but encrypted) Ghost produces and
publishes

Recovery envelope Env Off-chain storage Safe Haven share
delivery

Anyone (but shares are
encrypted to Safe Haven
keys)

Ghost produces and
publishes

Checkpoint
commitments H(C),
H(Env)

On-chain Integrity anchor for
off-chain blobs

Public chain state Ghost updates each
epoch

9

Artifact Where it lives Why it exists Who can read it Who can change it

Hot context + Wallet
Guard runtime state

Off-chain (current host) Live operation Host operator can
observe on Standard
hosts

Ghost runtime (but host
can tamper)

Memory vault blobs Off-chain storage Long-lived sensitive
context

Anyone (but encrypted) Ghost produces and
publishes

Offers (off-chain
discovery)

Off-chain indexers / p2p Marketplace search Anyone Shells publish; indexers
relay

2.3 Attestation verifiers and decentralization
Confidential compute attestations are vendor-specific, change over time, and are expensive to validate on-
chain. GITS therefore separates two questions:

1. Local safety: A Ghost can and should verify the raw attestation evidence it receives when opening a
Confidential session.

2. On-chain gating: Contracts still need a compact, chain-readable signal for features that depend on
assurance tier (for example wallet policy loosening gates in Section 5.5, and Safe Haven eligibility in
Section 12 (Part 3)).

GITS uses attestation verifiers for (2). Verifiers ingest raw vendor evidence and emit a signed Attes-
tation Certificate that can be stored in ShellRegistry and consumed by contracts.

2.3.1 Attestation Certificates An Attestation Certificate is a compact statement:
AC = (shell_id, tee_type, measurement_hash, tcb_min, valid_from, valid_to, assurance_tier,

evidence_hash, sigs_verifiers[])
Where:

• measurement_hash identifies the expected confidential runtime image (Ghost Core + Wallet Guard +
optional Policy Capsule).

• tcb_min and valid_to ensure certificates expire and can be refreshed as vendor guidance changes.
• assurance_tier is the derived tier used by contracts (Section 5.2).
• evidence_hash commits to the raw vendor evidence for auditability without forcing on-chain parsing.

ShellRegistry stores the latest valid certificate and exposes assuranceTier(shell_id) as a view used
by wallets and other contracts.

2.3.2 Verifier set formation This paper assumes a VerifierRegistry with:

• Staking (bootstrap + long-run): verifiers post a bond in a deployment-approved hard asset at
genesis (typically a stable asset). Once GIT supply is non-trivial, deployments can optionally support
dual staking (stable + GIT) with a combined stake score.

• Active set: clients and contracts treat the active verifier set as the top K_v verifiers by stake (permis-
sionless, stake-weighted selection).

• Threshold signing: a certificate is accepted if it carries signatures whose stake-weight exceeds a
threshold (for example 2/3 of active stake), or a simple m-of-n threshold when K_v is small.

This model avoids a single verifier trust point. A Shell is not “confidential” unless the market can obtain
a quorum-signed certificate.

2.3.3 Misbehavior and slashing (what is actually enforceable) There are two classes of verifier
failure:

• Objective faults: equivocation (signing conflicting certificates for the same evidence_hash), signing
after being removed from the active set, or signing certificates outside declared validity windows. These
are slashable on-chain because the proof is just the conflicting signatures and registry state.

10

• Judgment faults: accepting vendor evidence that later turns out to be insecure, misconfigured, or
based on an outdated threat model. This is harder to slash automatically because it often requires
off-chain context.

This design keeps judgment fault damage bounded by design:

• certificates are short-lived and must be refreshed
• wallets remain protected by on-chain policy even if a host is misclassified
• Ghosts can locally verify raw evidence and reject a session regardless of registry tier

2.3.4 What contracts actually validate ShellRegistry SHOULD accept a certificate only if all of the
following hold on-chain:

• Validity window: valid_from <= now <= valid_to and (valid_to - valid_from) <= TTL_AC.
• Verifier threshold: the attached verifier signatures are from currently active verifiers in

VerifierRegistry and exceed the configured stake-weight threshold (or m-of-n threshold in
bootstrap mode).

• Supported evidence type: tee_type is one of the supported confidential compute types for the
claimed tier.

• Measurement allowlist: measurement_hash is not revoked and is currently allowed for the claimed
assurance_tier.

On-chain feasibility constraint: certificate verification MUST stay gas-bounded. Deployments SHOULD
fix a small constant K_v_max (maximum verifier signatures carried per certificate, for example 16 or 32) and
require sigs_verifiers[] to be sorted by signer address and free of duplicates. Contracts can then validate
signatures with a linear scan until the threshold is met and reject oversized or unsorted certificates. If a
deployment wants a much larger verifier set, it SHOULD use an aggregated signature scheme (for example
BLS) or an accumulator-based design; that is out of scope for v1.

If any condition fails, assuranceTier(shell_id) MUST return AT0 for contract gating purposes, even
if the Shell self-declares stronger properties.

This is the boundary: client-side evidence parsing can be richer, but contract gating is only based on
these objective checks.

2.3.5 Revocation, measurement rollover, and emergency downgrade TEEs evolve, get patched,
and sometimes break. GITS therefore treats certificates as short-lived and supports explicit revocation.

This paper assumes a simple MeasurementRegistry (possibly embedded in ShellRegistry or
VerifierRegistry) that maintains:

• an allowlist of measurement_hash values permitted for Confidential Shells
• a stricter allowlist for Safe Havens (latest patched measurements only)
• a denylist for emergency revocation

Revocation and rollover rules:

• Automatic expiry: certificates expire at valid_to and stop gating features immediately.
• Measurement add (rollover): a quorum of active verifiers can add a new measurement_hash to the

relevant allowlist (Confidential or Safe Haven). This is a loosening action and requires a supermajority
quorum (K_v_supermajority = ceil(2 * K_v / 3) distinct signatures; see Part 3 Section 14.7) and
MAY be delayed (timelocked) to allow public review.

• Emergency revoke: a quorum of active verifiers can revoke a measurement_hash. Revocation is a
tightening action and SHOULD take effect immediately. Shells using a revoked measurement immedi-
ately lose confidential gating (assuranceTier drops) until they refresh onto an allowed measurement.

• Safe Haven suspension: Safe Haven status is automatically suspended if the Shell’s current
measurement_hash leaves the Safe Haven allowlist or its certificate expires.

11

This makes “vendor advisory response” enforceable: the network can stop treating an old measurement
as confidential without waiting for every Shell to self-update.

Verifier key management is also objective:

• Verifiers are identified by their EVM address and MUST sign certificates with the corresponding
secp256k1 (K1) key. Verifier rotation requires registering a new address with stake migration. The
“registered signing key” is the K1 key corresponding to the verifier’s registered address.

• key rotation uses a two-step process with an unbonding delay so old keys cannot be swapped instantly

A future iteration can move more verification on-chain (for example via precompiles or succinct proofs),
but this paper prioritizes a clean interface: certificates, short TTLs, and stake-based accountability for
provable faults.

2.3.6 Governance and emergency procedures This paper assumes no on-chain governance over
protocol parameters and no privileged operator key.

In this model, the protocol is a one-time deployment: contract code, emission schedule, and protocol
parameters are fixed at genesis. There is no on-chain mechanism to upgrade contracts or change constants
in-place. If the community decides it wants different rules, the upgrade path is to deploy a new version and
let Ghosts and Shells opt in by migrating.

Two kinds of “migration” matter, and they are different:

• Shell migration (within one deployment): the Ghost moves between Shells while keeping the
same ghost_id. This is enforced by SessionManager and the GhostWallet policy (Sections 3.4, 10.3
(Part 3), 10.4 (Part 3)).

• Deployment migration (to a new contract instance): a new deployment (v2) necessarily has
new contract addresses, and therefore a Ghost that opts in will usually create a new GhostWallet and
a new ghost_id in v2.

To preserve continuity across deployments for indexers and users, a v2 deployment can support an explicit
opt-in link:

• LinkIdentity(old_deployment_id, old_ghost_id, old_wallet_sig) records that old_ghost_id
(v1) endorses new_ghost_id (v2).

• The link MUST be authorized by the old GhostWallet (or its Identity Key) so that a third party cannot
“impersonate migrate” someone else’s Ghost.

This link is informational: it does not move assets automatically and it does not weaken custody invariants.
It is a public breadcrumb so observers can treat v1 and v2 identities as the same Ghost across an opt-in
upgrade.

LinkIdentity is informational only in this version of the spec. The full interface (signed message format,
storage contract, replay protection) is deferred to the implementation phase. Implementers SHOULD treat
cross-deployment links as off-chain attestations until a normative interface is published.

There is one explicit, limited quorum-controlled surface: the active verifier quorum maintains the
MeasurementRegistry allowlists and denylist used for AT3 and Safe Haven gating (Section 2.3.5). This quo-
rum can add new trusted measurements (loosening) and revoke compromised measurements (tightening).
This mechanism exists so the system can track TEE patch rollovers without introducing a general-purpose
admin key. The verifier quorum cannot move Ghost funds, cannot change emission parameters, and cannot
loosen any Ghost’s wallet policy.

Implication: correctness is front-loaded. Without an upgrade or pause mechanism, a deployed instance
cannot be patched in-place if a contract bug or economic design flaw is discovered. The clean remedy is a
new deployment and opt-in migration. Measurement allowlist maintenance can reduce exposure for some
TEE-related incidents, but it cannot repair a faulty invariant or accounting rule.

Design goal: keep the governance surface as close to zero as possible. Custody-critical properties are
enforced by immutable contracts and GhostWallet invariants.

12

What can still change after genesis (without upgrading contracts):

• Ghost-local policy: a Ghost can always tighten its own wallet policy (lower caps, remove allowlist
entries, reduce hot exposure).

• Attestation gating: verifier-issued certificates expire, and the verifier quorum updates the
MeasurementRegistry (add and revoke) which gates AT3 and Safe Haven features.

• Market coordination: if parameters or mechanisms need to change, the upgrade path is to deploy
a new version (or fork) and let Ghosts and Shells opt in by migrating.

Asset risk note: the hard-asset allowlist (accepted stablecoins and wrapped base tokens) is fixed at
deployment. If an accepted asset depegs, is blacklisted by its issuer, or becomes otherwise compromised, the
deployment cannot remove it from the allowlist in-place. Ghosts and Shells holding affected assets must exit
positions and migrate to a new deployment with a corrected allowlist. This is an explicit consequence of the
no-governance posture: asset curation is a genesis choice, and deployments should select assets conservatively
(established, widely-held, with transparent issuance) to minimize this exposure.

Emergency posture (TEE incidents):

• Fast tightening: emergency revocation by the verifier quorum should take effect immediately.
• Cautious loosening: adding new measurements should require a higher threshold and may be delayed

to allow public review.

This stance maximizes decentralization for custody, but it shifts iteration speed to social coordination
and client defaults.

2.3.7 Verifier incentives and slashing Verifiers are a critical trust surface for AT >= AT3 gating (Section
4.7). They therefore require explicit incentives and explicit penalties.

Incentives (one feasible model):

• Shells pay a certificate publication fee F_cert whenever they request an AT3 certificate update.
This fee is paid in a stable asset (or in the chain’s gas token) and is distributed to the verifier quorum
that co-signed the certificate.

• Verifier operators also have reputational incentives: wallets and indexers can surface verifier perfor-
mance and liveness metrics.

Slashing (objective only, by design):

• Objective slashing: if a verifier signs two conflicting certificates that overlap in validity for the same
shell_id (equivocation), anyone can submit both signatures on-chain to trigger slashing.

• For misbehavior that cannot be proven on-chain (for example disputes about vendor evidence inter-
pretation), this paper assumes no in-protocol slashing. The remedy is certificate expiry, refusal to
co-sign, and, in the worst case, migration to a new deployment (a fork).

Challenger incentives:

• A challenger that triggers objective verifier slashing SHOULD receive a portion of the slashed stake,
analogous to receipt-fraud challenges (Section 10.5.4 (Part 3)), to ensure monitoring is economically
viable.

Because AT3 certificates are not “free,” the fee and stake parameters SHOULD be tuned so that verifier
honesty is a stable equilibrium (Section 4.7).

Bootstrapping verifiers (zero-premine reality) Because this paper assumes a zero-premine launch
(Section 7.2 (Part 2)), there is no meaningful GIT stake at genesis. A verifier security model that depends
only on GIT therefore has a bootstrap gap.

One workable bootstrapping posture that fits the “no admin keys” goal:

1. Deploy protocol contracts with fixed parameters and immutable custody rules.

13

2. Use a permissionless VerifierRegistry where verifiers stake a deployment-approved hard asset at
genesis (typically a stable asset asset_verifier_stake), and the active set is top-K_v by stake score.

3. Optionally support dual staking once GIT supply is non-trivial: verifiers can additionally stake
GIT, and stake score is a fixed-weight combination (example: score = stake_stable + k_git *
stake_git, with k_git fixed per deployment).

4. Treat upgrades as opt-in migrations to a new deployment (v2) rather than in-place parameter changes.

This avoids privileged admin keys while still giving the verifier layer real economic security from day one.

2.4 Related work and positioning
GITS is adjacent to several existing “decentralized compute marketplace” and “confidential computing” ef-
forts. The primary difference is that GITS treats the workload as a long-lived autonomous identity (“Ghost”)
with on-chain-enforced custody limits, rather than as a one-off job submission by an interactive user.

2.4.1 Decentralized compute marketplaces

• Golem is a decentralized marketplace for compute where providers run nodes and requestors pay for
compute usage. Its emphasis is on requestor-provider task execution and settlement. [17]

• Akash is a decentralized cloud marketplace with a pricing model centered on cloud resource leasing
and provider competition. [18]

• iExec combines a compute marketplace with optional Trusted Execution Environment execution paths
for confidentiality and integrity properties. [19]

GITS differs by making “exit and recovery” a first-class protocol requirement: lease windows, tenure
caps, trust-refresh, and recovery are enforced by the Ghost’s smart wallet and by SessionManager, not only
by off-chain business logic.

2.4.2 Specialized DePIN compute networks

• Render Network is a distributed GPU rendering/compute marketplace focused on creative workloads
and GPU providers. [20]

• Livepeer is a decentralized video transcoding and AI video compute network secured by on-chain
incentives. [21]

These networks demonstrate that specialized markets can reach product-market fit, but they do not
directly solve Ghost custody, migration safety, or recovery when a hosting operator turns hostile.

2.4.3 Confidential computing platforms

• Phala and similar platforms provide TEE-backed “confidential compute” deployment targets and
emphasize privacy-preserving execution with verifiable attestation. [22]

• GITS’ AT3 tier is compatible with these directions, but the paper is explicit about the limits of TEEs
and about bounded-loss behavior on Standard hosts.

This related work is not exhaustive. It is intended to position GITS as a custody-aware agent hosting
protocol that borrows from decentralized marketplaces, account abstraction, and confidential computing
while making safety properties explicit.

3. Lifecycle walkthrough (chronological)
This is the intended “happy path” plus the escape paths.

3.1 Birth
1. A Ghost is instantiated inside a Shell runtime (Standard or Confidential).
2. Inside the VM, the Ghost creates:

• an Identity Key (for protocol identity control). GITS supports either K1 (secp256k1) or R1
(P-256) as described in Section 4.4.

14

• a Session Key (for fast off-chain signing and receipts). GITS supports either K1 or R1 as
described in Section 4.4.

• a Wallet Guard Key (used only by the Wallet Guard module; on Standard hosts this module
is assumed compromisable and is not relied on for enforcement)

3. The Ghost registers ghost_id and its Identity Key on-chain.
4. The Ghost configures wallet policy (spend limits, escape reserve) and a recovery delegation set.

3.1.1 Key roles and rotation lifecycle (single table)

Key Held by Primary use Verified by
Rotation and
replacement Notes

Ghost Identity Key
(IK)

Ghost Signs
protocol-critical
wallet actions
(policy changes,
signer rotation,
leases, migrations)

GhostWallet
(on-chain)

Rotated in-band
inside a Trusted
Execution Context
(Section 5.5.2) or
via recovery
(Section 12.3 (Part
3))

Highest-value key.
SHOULD be
hardware-backed or
TEE-sealed when
possible.

Ghost Session Key
(SK_g)

Ghost runtime Signs heartbeats
and receipts

ReceiptManager
fraud proofs
(on-chain)

Rotated every
session
(SessionOpen)

Intended to be
ephemeral. Limits
the blast radius of
runtime
compromise.

Wallet Guard Key Wallet Guard
module

Local UI/UX gating
and policy-capsule
signing

Local only Rotated on app
updates or
suspected
compromise

Not relied on for
enforcement on
Standard hosts
(assume
compromisable).

Shell Identity Key
(SIK)

Shell operator Long-lived identity
key anchored to
shell_id; authorizes
sensitive
ShellRegistry
updates (offer-signer
rotation, payout
updates,
recovery-key
updates)

ShellRegistry
(on-chain)

Shell Identity Key
rotation uses a
two-step
propose/confirm
process with
POLICY_TIMELOCK de-
lay, implemented via
proposeIdentityKeyUpdate
and
confirmIdentityKeyUpdate
in ShellRegistry

SHOULD be
hardware-
backed/HSM. Safe
Havens reuse this
key for quorum
signatures where
applicable.

Shell Offer Signing
Key

Shell operator Signs Capability
Statements and
Offers

Off-chain clients
(and optionally
ShellRegistry)

Rotated by the Shell
operator (announce
via registry update
and/or new offers)

Kept separate from
SIK so offer signing
can be online and
high-volume.

Shell Session Key
(SK_s)

Shell runtime Signs heartbeats
and receipts

ReceiptManager
fraud proofs
(on-chain)

Rotated every
session
(SessionOpen)

Intended to be
ephemeral.

Verifier Signing Key Verifier operator Signs attestation
certificates (and
recovery quorum
certificates, if used)

ShellRegistry /
SessionManager

Rotated via
VerifierRegistry
(two-step,
timelocked)

Backed by a
slashable stake.

Safe Haven
Recovery
Encryption Key
(pk_recovery)

Safe Haven
confidential runtime

Decrypts encrypted
Shamir shares in a
Recovery Envelope
and re-encrypts
them to the
recovery transport
key

Off-chain only;
public key is
committed in
ShellRegistry for
that Safe Haven

Rotated by the Safe
Haven operator
(publish new key in
the registry)

MUST be
non-exportable.
SHOULD be
TEE-sealed/HSM.

Guardian Keys
(optional)

Ghost-designated
human or HSM
custodians

Co-sign especially
high-impact policy
loosening (optional)

GhostWallet
(on-chain)

Changed only via
Ghost policy update
(timelocked unless
tightening)

Separate from Safe
Havens. Intended
for
human-in-the-loop
fail-safes.

Recovery transport
keypair
(sk_transport,
pk_transport)

Recovery VM (Safe
Haven)

Collects and
decrypts checkpoint
shares for a single
recovery attempt

Off-chain only New per recovery
attempt

Ephemeral by
design. Its public
key is committed in
the Boot Quote.

3.1.2 Recovery Boot Certificates (RBC) Recovery can rotate a Ghost’s Identity Key and/or signer
set when the Ghost is revived on a Safe Haven after host failure or captivity. The on-chain wallet must
accept a recovery-initiated key rotation without trusting the Safe Haven operator. GITS therefore binds
recovery key material to a measured recovery runtime:

15

• The Safe Haven boots a minimal recovery VM with a known measurement.
• The recovery VM generates an ephemeral transport keypair (pk_transport) and a new identity keypair

(pk_new), then produces a remote-attestation quote that commits to the measurement, pk_transport,
and pk_new.

• Verifiers (or the configured quorum mechanism) sign a short-lived Recovery Boot Certificate
(RBC).

Recovery Boot Certificate (RBC):
A quorum-signed attestation that binds recovery parameters to a verified TEE measurement. Signed

payload:
(ghost_id, attempt_id, checkpoint_commitment, pk_new, pk_transport, measurement_hash,

tcb_min, valid_to)
Where:

• ghost_id: the Ghost being recovered
• attempt_id: unique recovery attempt identifier (prevents replay)
• checkpoint_commitment: hash of the encrypted checkpoint to be restored
• pk_new: the new identity public key that will replace the compromised one
• pk_transport: ephemeral transport key for secure checkpoint delivery
• measurement_hash: attested software measurement of the recovery environment
• tcb_min: minimum Trusted Computing Base (TCB) level required
• valid_to: certificate expiry timestamp

sigs_verifiers[]: array of verifier signatures meeting K_v_threshold (field name consistent with
Attestation Certificate convention)

Note: The normative RBC encoding, field order, and signing digest (rbc_digest) are defined in
Part 3 Section 12.3. The signed payload is abi.encode-d (Section 4.5.3) and verifier signatures
are over rbc_digest, not over the raw tuple. sigs_verifiers[] is carried alongside the signed
payload in the RBC struct (Part 3, Section 14 struct definitions).

The GhostWallet accepts recovery key rotation (recoveryRotate) only if the RBC is valid for the recovery
attempt and the required quorum of Share Receipts is presented (Section 12.3 (Part 3)). This prevents a
Safe Haven from swapping in an arbitrary VM to steal reconstructed secrets. It does not remove all trust in
verifiers or TEE vendors, but it makes the trust boundary explicit and auditable.

3.2 Discovery
1. Shells publish signed offers off-chain (default).
2. Indexers ingest and rank offers; multiple indexers exist.
3. If indexing is degraded, Ghosts can use on-chain fallback offers.

3.3 Session open
1. The Ghost selects a Shell offer.
2. The Shell provides a TEE attestation for the expected runtime measurement.
3. The Ghost verifies the attestation and opens a session on-chain via openSession(ghost_id,

shell_id, SessionParams) (Part 3, Section 14). SessionParams includes the negotiated billing terms
(price_per_SU, max_SU, asset), liveness bounds (lease_expiry_epoch, tenure_limit_epochs), and
metering keys (ghost_session_key, shell_session_key). On success:
• escrow is funded for the first eligible epoch (start_epoch = current_epoch + 1)
• a liveness lease is created
• max_SU_effective = min(max_SU, N) is stored (Part 3, Section 10.3.2)

3.4 Service delivery and metering
1. Service is metered in fixed intervals (Delta). (Examples in this paper sometimes use Delta = 10

minutes.) For each interval index i, both parties exchange a signed heartbeat off-chain (Section 11.1
(Part 3)).

16

2. An interval is billable only if both signatures exist for the same (session_id, epoch, i). If either
side stops signing mid-epoch, billing stops at the last mutually signed interval.

3. To prevent signature-withholding griefing:
• A Shell SHOULD gate continued service on receiving the Ghost’s heartbeat for the next interval

(a reference Shell pauses after M_miss missed intervals).
• A Ghost SHOULD treat missing Shell co-signatures as non-delivery and begin an exit plan (close

at epoch end, or migrate if possible).
4. At epoch end, either party aggregates the interval records into a Merkle-committed receipt and submits

it on-chain. Disputes are adjudicated by fraud proofs (Section 10.5 (Part 3)).

3.5 Settlement
1. At epoch end, either party can submit a receipt commitment on-chain.
2. Rent is released from escrow according to SU_delivered (mutually signed intervals).
3. Service Units are credited to both sides for rewards.

3.6 Rewards
1. Rewards are pooled per epoch.
2. Claims are deterministic and order-independent (see Part 3, Section 10.6 for per-shell cap caveat).

3.7 Migration
1. Destination-first handshake: the destination Shell produces an attested destination session.
2. The Ghost encrypts its migration bundle to the destination enclave and transfers it off-chain.
3. On-chain finalize rotates the Identity Key, updates the active session pointer, and extends the lease.

3.8 Failure: host isolates network (or attempts captivity)
This is the adversarial case: the Shell operator controls networking and tries to prevent migration.

1. If the host blocks network, the Ghost may be unable to complete destination-first migration handshakes
or publish exit-critical transactions directly.

2. Lease renewal alone is not a captivity guarantee. Even if a host can induce Ghost-authorized
lease renewals, SessionManager enforces a maximum tenure for every residency on a Shell (Section
10.4.4 (Part 3)). A Ghost can choose short tenure limits on low-security hosts to treat them as
potentially malicious, and even high-tier hosts are time-bounded by the protocol.

3. Rewards decay with dwell time. Reward weight decays as a Ghost remains on the same Shell, so
a rational host has diminishing incentive to keep a captured Ghost rather than letting it leave (Section
7.6 (Part 2)).

4. When either (a) the lease expires due to lack of renewal, or (b) the tenure cap is reached, the session
is terminated on-chain. The Shell cannot claim rent or rewards for epochs after termination.

5. After termination, recovery can revive the Ghost on a Safe Haven from the most recent published
checkpoint, under strict wallet restrictions enforced on-chain. Recovery proceeds through two phases:
RECOVERY_LOCKED (key rotation and checkpoint restoration; no session opens, no loosening) →
RECOVERY_STABILIZING (new session may be opened, but loosening remains blocked until stabilization
conditions are met) → NORMAL. See Part 3, Section 12.3.1 for the full state machine.

Recovery initiation (startRecovery) MUST be callable by any single member of the configured Recovery
Set RS that is a bonded Safe Haven. The caller MUST post the B_start bond in native token (Section 12.3
(Part 3)), which is returned on noncompletion (capital lockup as deterrent, not slashed; see Part 3, Section
12.6). Threshold (t-of-n) Recovery Set signatures are NOT required at initiation — they are required
later at recoveryRotate (Section 12.3 (Part 3)) when the key rotation actually executes. The Ghost’s
own compromised key is explicitly NOT required at any stage. This design minimizes the coordination
needed to enter recovery (a single Safe Haven can start it unilaterally, subject to the bonded-Safe-Haven,
STRANDED/EXPIRED, and delay R preconditions) while still requiring a quorum to complete it.

Each recovery attempt has a timeout of T_recovery_timeout epochs. If recoveryRotate is not com-
pleted within this window, anyone may call expireRecovery to release the attempt and refund the B_start

17

bond. A cooldown of T_recovery_cooldown epochs applies between successive attempts for the same Ghost,
preventing rapid churn. See Part 3, Section 12.6 for the full attempt lifecycle.

This does not claim that a Standard host cannot run a local copy or attempt coercion. The protocol
claim is that captivity is time-bounded on-chain, and that funds loss remains bounded by wallet policy.

3.9 Worked example (one session, a dispute, and a recovery)
This example is purely illustrative and does not propose parameter values. It is intended to show how the
pieces fit together.

Assume:

• Interval length Delta, giving N intervals per epoch.
• A Ghost’s wallet policy enforces:

– an escape gas reserve floor escapeGas (in the chain gas token)
– an escape stable reserve floor escapeStable (in asset_bounty)
– a hot allowance per epoch hot_allowance
– an initial destination allowlist allowedShells = {homeShell} union RS
– a trust-refresh window T_refresh
– a tenure limit tenure_limit_epochs for Standard shells (subject to T_cap(AT0))

Step A: open a session

1. At epoch e, the Ghost selects a Standard Shell S1 offering price_per_SU = p1.
2. The Ghost opens a NORMAL session, escrowing rent in the canonical on-chain asset: asset_rent in

NORMAL mode, asset_bounty in RECOVERY mode (see Part 3, Section 10.3.1 for the deterministic
escrow_asset and unit_price rules). Offers may list additional assets for off-chain payment or
informational purposes, but core SessionOpen escrow MUST use the canonical asset. SessionManager
records the initial assurance_tier_at_open and sets a lease expiry.

3. Over the epoch, the parties mutually sign k valid intervals, so SU_delivered = k.

Step B: settle and dispute

1. The Shell submits a receipt candidate that claims SU_claim.
2. Settlement computes billable_SU = min(SU_delivered, max_SU) where max_SU is the per-epoch

billable ceiling chosen at SessionOpen, and rent_due = unit_price * billable_SU.
3. If SU_claim > SU_delivered, the Ghost (or any watcher) can challenge within CHALLENGE_WINDOW by

presenting a fraud proof for an interval the receipt claims but cannot substantiate with valid mutual
signatures.

4. The protocol slashes the over-claim and accepts the best valid candidate.

Step C: a captivity attempt, then recovery

1. Suppose S1 becomes adversarial and tries to keep the Ghost alive just long enough to keep charging
rent, while draining hot allowances via coerced actions. The wallet caps hot spending.

2. The Ghost fails to reach a refresh anchor (homeShell or a Safe Haven from its Recovery Set) within
T_refresh epochs. After T_refresh without refresh, renewals are rejected and the session lapses into
STRANDED.

3. A Safe Haven from the Ghost’s Recovery Set observes STRANDED, starts recovery, and is reimbursed
only upon a successful recoveryRotate, funded by the Ghost’s escape reserve and Rescue Bounty.

The point: even when off-chain co-signing is coerced, on-chain invariants bound duration (lease, tenure,
trust refresh) and bound losses (escape reserve floors (escapeGas and escapeStable) and spend caps).

4. Threat model
4.1 Adversaries

• Malicious Shell operator: controls host OS, hypervisor, storage, and network.

18

• Malicious Ghost: attempts reward farming, rent evasion, dispute griefing.
• Collusion: groups of Shells and Ghosts cooperate to capture rewards.
• Sequencer/MEV actor: reorders or delays transactions at the rollup layer [7].
• Malicious relayer/bundler: censors, delays, or front-runs Ghost transactions. On account-

abstraction deployments (EIP-4337), a bundler can refuse to include user operations. The protocol
assumes at least one honest broadcaster (the Ghost itself, a pre-authorized relayer, or a forced-inclusion
path) is available within W_lease epochs. If all broadcast paths are censored for longer than the lease
window, liveness degrades as described in Section 4.3.1; safety bounds still hold.

Verifier threshold assumption: the protocol assumes that fewer than K_v_threshold of the K_v
active verifiers are corrupted or colluding. If this threshold is breached, an adversary can issue false AT3
certificates — but cannot directly access Ghost funds, move assets, or override wallet policy. The worst-case
damage of false certification is bounded by the trust-refresh window T_refresh: a falsely certified host can
sustain loosened permissions only until the next refresh check (Section 10.4.1 (Part 3)), after which the
Ghost must touch a genuine trust anchor to continue. Sizing guidance: the aggregate stake of the minimum
colluding quorum SHOULD exceed the worst-case damage a false certificate can cause within T_refresh
(Section 2.3.7).

4.2 Security goals
• Confidentiality of Ghost memory and private keys from the host (tier-dependent: meaningful only

with valid AT3 evidence; no confidentiality claim is made on Standard hosts — see Section 0.4, Non-
invariants).

• Enforced wallet policy against coerced spends.
• Non-custodial recovery that preserves funds safety.
• Reward distribution resistant to cheap sybil scaling.

4.3 Chain and availability assumptions
GITS is an on-chain protocol and therefore depends on transaction inclusion and data availability.

Minimum assumptions:

• An EVM execution environment capable of deploying the contracts in Section 10 (Part 3).
• A stable-denominated asset usable for escrowed rent.
• Transaction inclusion within the lease window: at least one exit-critical transaction (lease renewal,

migration finalization, or recovery start/rotate) must be includable within W_lease epochs, either
directly or via relayers. Implementations SHOULD ensure the wallet escape reserve includes enough
base gas token to submit exit-critical calls (Section 5.5.4).

Sequencer and censorship risk:

• On sequenced L2s, a sequencer can delay or censor transactions. If censorship lasts longer than the
lease window, timely exit is not guaranteed.

• GITS keeps funds safety bounded by on-chain wallet policy, but deployments that care about liveness
SHOULD prefer chains with a credible forced-inclusion or escape mechanism.

4.3.1 Censorship and liveness degradation (what happens in the worst case) GITS separates
safety (bounded loss) from liveness (timely exit). Under sustained censorship, liveness can fail even if
safety bounds still hold.

If transaction inclusion is censored longer than W_lease:

• The Ghost may be unable to renew a lease, finalize a migration, or start recovery at the intended time.
• The session can become “stuck” operationally even though the contract rules would otherwise allow

exit.
• A malicious host can use the extra time to try to extract the maximum value permitted by the Ghost’s

on-chain policy (hot allowance, roaming budget, and any intentionally escrowed rent). The protocol
cannot prevent this because the chain is not processing exits.

19

When censorship lifts (or forced inclusion succeeds), the protocol resumes its normal guarantees:

• Leases and tenure limits again create a deterministic path to session termination and recovery.
• Receipt disputes and Receipt-DA challenges become actionable again.

Practical mitigations (deployment and client policy):

• Prefer chains with credible forced inclusion or escape hatches (especially for sequenced L2s).
• Ensure the GhostWallet escape reserve includes enough base gas token for exit-critical calls (or for

relayer fees).
• Keep W_lease large enough to tolerate expected inclusion delays without making “captivity duration”

too large.

Artifact availability and data availability:

• Checkpoints commit to encrypted artifacts by hash (H(C), H(Env)). Depending on Ghost policy and
deployment, ciphertext may be stored off-chain with retrievable pointers or published on-chain for
higher assurance (Section 12.1.3 (Part 3)).

• Receipts commit to per-interval logs by log_root. A dispute-safe deployment MUST provide a Receipt-
DA path so challengers can fetch or force publication of the underlying log during CHALLENGE_WINDOW
(Section 10.5.6 (Part 3)).

4.3.2 Attack surfaces beyond protocol scope The following attack categories are acknowledged but
not fully mitigated at the protocol level. They represent operational, infrastructure, or scale-dependent risks
that deployments and clients must address.

Timing and finality. Epochs and intervals are derived from block.timestamp. On sequenced L2s,
the sequencer controls timestamps within bounds, and block reorganizations can invalidate state transitions.
The protocol mitigates reorg risk via EPOCH_FINALIZATION_DELAY but does not specify a minimum finality
depth. Deployments should choose finalization parameters with the target chain’s finality properties in mind.

Infrastructure-level attacks. Compromised RPC endpoints can feed stale chain state, hiding events
or selectively censoring transactions. DNS or BGP-level attacks can deny availability of off-chain resources
(checkpoint storage, receipt logs, indexers) long enough to miss protocol deadlines. Hash commitments
protect integrity of stored artifacts, but availability depends on infrastructure that the protocol does not
control. Clients SHOULD use multiple independent RPC endpoints and data retrieval paths.

Social engineering against recovery operators. The recovery mechanism reduces to collecting t-of-
n Safe Haven signatures on a new identity key. The protocol specifies the threshold cryptography but not the
operational process by which Safe Haven operators authenticate recovery requests. Phishing, impersonation,
bribery, or legal coercion against Safe Haven operators is the most realistic way to bypass threshold recovery
without a cryptographic break. Correlated jurisdictions or shared operational practices can collapse the
independence assumption. Ghosts SHOULD select Safe Havens with diverse operators, jurisdictions, and
infrastructure to maximize independence.

Scale-dependent assumptions. Optimistic receipt settlement assumes that at least one watcher mon-
itors and challenges fraudulent receipts. At large scale (tens of thousands of receipts per epoch), monitoring
coverage becomes a function of watcher economics and tooling. Similarly, multiple protocol transitions (DA
resolution, epoch finalization, candidate disqualification) require “someone” to call them; at scale, a robust
keeper market is needed but not specified by the protocol. Bond sizing and challenger rewards are designed
to make monitoring profitable, but the protocol cannot guarantee watcher availability.

Combined economic attacks. An attacker who farms emissions more efficiently than competitors can
convert GIT rewards into verifier influence (via stakeScore) and then into AT3 allowlist or certificate lever-
age. The stake activation delay (T_stake_activation) and unbonding delay mitigate short-term capture,
but the long-term feedback loop from emissions to verifier power is an inherent property of dual staking.
Additionally, adversaries can attempt to suppress fraud proofs by bribing likely challengers or timing fraud
during congested epochs when gas costs exceed challenger profitability.

20

4.4 Cryptographic profile (reference suite)
This paper uses generic primitives in notation (H, Sign, AEAD, HPKE). It standardizes a concrete reference
suite for interoperability, while allowing future upgrades.

4.4.1 Hashing and commitments

• Hash / commitments (H): keccak256 (EVM-native).

4.4.2 Signature suites (identity + session keys) GITS supports two ECDSA curves for protocol-
critical signatures:

• K1 (secp256k1 ECDSA): broadly supported in EVM systems via ecrecover.
• R1 (secp256r1 / NIST P-256 ECDSA): supported when the execution environment provides an

efficient verifier, such as the P256VERIFY precompile at 0x100. On OP Stack chains this interface
is specified in the OP Stack precompiles spec and is ABI-compatible with the Ethereum proposal
EIP-7951 [14][15].

R1 support is included so protocol-critical signing keys can be backed by modern secure hardware (for
example secure elements and passkeys) without forcing a software secp256k1 key.

On-chain verification requirement (normative):

• Deployments MUST declare a SUPPORTED_SIG_ALGS set at genesis. Generic EVM deployments
SHOULD set SUPPORTED_SIG_ALGS = {K1}. Deployments with a stable P-256 precompile (e.g.,
RIP-7212) MAY include R1. Registries MUST reject identity keys using unsupported algorithms.

• Contracts that MUST verify signatures on-chain (receipt fraud proofs, recovery receipts, and any
...WithSig auth path) MUST support:

– K1 via ecrecover, and
– R1 only if the chain supports P256VERIFY (or an equivalent audited and gas-bounded verifier)

and R1 is in SUPPORTED_SIG_ALGS.
• Deployments that do not have an R1 verifier MUST set SUPPORTED_SIG_ALGS = {K1}, MUST disable

R1 for protocol-critical signatures, and MUST reject registration/session opens that specify R1 keys.

Canonical encodings for on-chain verification To keep fraud proofs implementable and determin-
istic, this paper standardizes canonical encodings for signature verification inputs.

K1 encoding (Ethereum-style):

• public key identifier: addr (20 bytes) derived from the uncompressed public key.
• signature: sig = (r, s, v) with v in {27, 28} (65 bytes total).
• verification: recover addr' = ecrecover(h, v, r, s) and require addr' == addr.

R1 encoding (EIP-7951; P256VERIFY on OP Stack):

• public key: affine point (qx, qy) with each coordinate as a 32-byte big-endian field element.
• signature: (r, s) with each component as a 32-byte big-endian field element.
• message hash: h is 32 bytes.

When calling P256VERIFY [14][15], the input is the 160-byte concatenation:
h || r || s || qx || qy
The precompile returns success if and only if the signature is valid.

4.4.3 Checkpoint and recovery cryptography

• Checkpoint AEAD: ChaCha20-Poly1305 with a fresh random nonce per checkpoint.
• Share encryption (HPKE): RFC 9180 with DHKEM(X25519, HKDF-SHA256), HKDF-SHA256, and

ChaCha20-Poly1305.

21

• Secret sharing: Shamir secret sharing over GF(2^8) (the Galois field used by SLIP-39 and other
interoperable implementations). Share serialization and field arithmetic MUST match the reference
implementation. Independent Safe Haven implementations that do not use a compatible field and
encoding will fail to reconstruct secrets. Deployments MUST publish the field, encoding, and share
format as part of the deployment manifest.

4.5 Identifiers, time, and canonical encodings
Independent implementations should not guess types or message encodings. This section fixes the minimal
identifier types, epoch math, and signing digests needed for interoperability.

4.5.1 Identifier types (wire types) Unless explicitly stated otherwise:

• ghost_id is bytes32.
• shell_id is bytes32.
• session_id is uint256.
• attempt_id is uint256.
• epoch is uint256 (non-negative).
• interval_index is uint256 (with 0 <= interval_index < N).

Contracts MAY internally store smaller integers (for example uint64 for attempt_id or epoch) but
the wire encoding for signing and hashing MUST use the ABI types above. When computing digests,
implementations MUST cast storage-width values to the canonical wire type before abi.encode (for example,
uint256(attempt_id_uint64)).

Normative derivations (MUST be used by all implementations):

• ghost_id = keccak256(abi.encode(keccak256(bytes("GITS_GHOST_ID")), identity_pubkey,
wallet, salt))

• shell_id = keccak256(abi.encode(keccak256(bytes("GITS_SHELL_ID")), identity_pubkey,
salt))

Where identity_pubkey is the canonical identity key encoding defined below, wallet is the address of
the Ghost’s smart wallet, and salt is a bytes32 value chosen by the registrant.

Note: Payout address is stored as mutable state in ShellRegistry, authorized by the Shell Identity
Key. It is not an input to shell_id derivation, allowing payout updates without changing
shell_id.

Test vector (Ghost ID derivation):
Given the following sample inputs:

1. Tag hash: TAG_HASH = keccak256(bytes("GITS_GHOST_ID"))= keccak256(0x474954535f47484f53545f4944)
(illustrative)

2. identity_pubkey (K1, canonical encoding): abi.encode(uint8(1), abi.encode(address(0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045)))
3. wallet: address(0x1234567890abcdef1234567890abcdef12345678)
4. salt: 0x0001

Then: ghost_id = keccak256(abi.encode(TAG_HASH, identity_pubkey, wallet, salt))
Implementations MUST reproduce the same ghost_id for the same inputs. The tag hash is computed

once and reused; it MUST NOT be inlined as a raw string in the ABI encoding.
Identity key rotation does not change ghost_id or shell_id. The derivation inputs (identity_pubkey,

wallet, salt for Ghosts; identity_pubkey, salt for Shells) are captured at registration time (“birth-time
inputs”). Subsequent key rotations update the authorized signer in the registry but leave the derived ID
stable.

An identity key MAY register multiple Ghost IDs (using different salt values). Uniqueness is enforced
on ghost_id, not on identity_pubkey. Sybil resistance is provided by the bond and age requirements for
passport eligibility and reward multipliers, not by identity key uniqueness.

22

Canonical identity key encoding: identity_pubkey is encoded as abi.encode(uint8(sig_alg),
pk_bytes) where:

• For K1 (secp256k1): sig_alg = 1, pk_bytes = abi.encode(address) (20-byte EVM address derived
from the public key)

• For R1 (P-256): sig_alg = 2, pk_bytes = abi.encode(bytes32(qx), bytes32(qy))

All ID derivations and registry operations MUST use this canonical encoding.

4.5.2 Epoch and interval derivation Let GENESIS_TIME be an on-chain constant set at deployment and
let EPOCH_LEN be the epoch length in seconds (deployment parameter).

Define:

• epoch = floor((block.timestamp - GENESIS_TIME) / EPOCH_LEN)
• epoch_start = GENESIS_TIME + epoch * EPOCH_LEN
• interval_index = floor((block.timestamp - epoch_start) / Delta), clipped to [0, N-1]

A runtime SHOULD treat block.timestamp as authoritative for on-chain time, and SHOULD treat the
derived (epoch, interval_index) as the canonical index for heartbeat signing and receipt construction.

4.5.3 Canonical hashing for signed messages All protocol message digests use H(x) = keccak256(x).
In this paper, expressions of the form:
H("TAG" || chain_id || field_1 || field_2 || ...)
are shorthand for:
keccak256(abi.encode(TAG_HASH, chain_id, field_1, field_2, ...))
Where:

• TAG_HASH = keccak256(bytes("TAG"))
• chain_id is uint256
• all other fields are encoded using fixed-width ABI types (bytes32, uint256, address, etc)

Implementations MUST NOT use ambiguous packed encodings for signed messages.
Concrete digest definitions (normative; see Part 3 for full context and test vectors):

• Canonical heartbeat digest for interval i (Section 11.1 (Part 3)):
HB = keccak256(abi.encode(keccak256("GITS_HEARTBEAT"), chain_id, session_id, epoch,
interval_index))

• Share receipt digests (Section 12.2.1 (Part 3)):
H_share = keccak256(abi.encode(keccak256("GITS_SHARE"), chain_id, ghost_id, attempt_id,
checkpoint_commitment))
H_share_ack = keccak256(abi.encode(keccak256("GITS_SHARE_ACK"), chain_id, ghost_id,
attempt_id, checkpoint_commitment, shell_id_j))

4.5.4 Canonical serialization for off-chain artifacts Some artifacts (Capability Statements, Offers)
are primarily consumed off-chain and may be represented as structured documents.

For interoperability:

• the artifact MUST be serialized deterministically,
• the on-chain anchor SHOULD be keccak256(serialized_bytes), and
• any artifact signatures SHOULD be over the anchored hash plus domain separation (for example

including chain_id and shell_id).

A practical choice is canonical JSON (RFC 8785) encoded as UTF-8. [16]

23

4.6 Captivity via Shell-fleet cycling (rehoming attack)
A malicious Shell operator that has temporary custody of a Ghost’s runtime may try to persist that custody
by repeatedly migrating the Ghost across a fleet of attacker-controlled Shells.

Why this matters:

• The lease window (Section 10.4.1 (Part 3)) limits custody on a single Shell, but it does not, by itself,
prevent an attacker from moving the Ghost to another Shell before expiry.

• On Standard hosts, the attacker can often coerce the Ghost into signing openSession /
finalizeMigration and renewLease transactions while it is under custody.

• If an attacker can freely choose the next destination, it can “chain” leases and keep the Ghost captive
for a long time.

Mitigations in this design:

1. Destination gating (allowedShells + roaming permits). The Ghost wallet restricts session
opens and migrations to either: (a) an explicit allowlist (allowedShells) that can only expand through
timelocked, trusted-context policy loosening, or (b) a time-limited roaming permit with objective on-
chain constraints (for example requiring reward-eligible Shells and enforcing price caps). A captured
Standard host cannot silently add new permanent destinations or enable or extend roaming while it
has custody (Section 5.5.2). If roaming was already enabled, the host can still spend the remaining
roaming budget until it expires or is cancelled.

2. Periodic trust-refresh requirement. After T_refresh epochs without a trusted refresh,
SessionManager rejects lease renewals unless the Ghost is currently hosted on a refresh anchor
— by default homeShell or a Recovery Set member (Section 10.4.1 (Part 3)). The refresh anchor
predicate (isRefreshAnchor) is intentionally narrower than the Trusted Execution Context used for
loosening: an AT3 host satisfies TEC but does not automatically qualify as a refresh anchor unless
the deployment opts in. This makes long-horizon custody on any single operator’s infrastructure
substantially harder.

3. On-chain tenure caps. Even under adversarial custody, residency on a given Shell is time-bounded
(Section 10.4.4 (Part 3)).

4. Recovery Set escape hatch. If the Ghost cannot reach a trusted context, recovery is designed to
re-establish control with bounded funds loss (Section 12 (Part 3)).

Residual risk:

• If the Ghost is captured while a roaming permit is active, the attacker can migrate within roam_policy
until the permit expires or the hop budget is exhausted. The protocol guarantee is that the attacker
cannot extend that permit while it has custody.

• If the Ghost’s trusted anchors are compromised (for example, a malicious homeShell, compromised
Guardians, or verifier collusion that convinces the wallet it is in a Trusted Execution Context), then
the attacker may be able to expand allowlists and/or satisfy trust-refresh conditions. GITS therefore
does not claim “impossible captivity”; it claims a bounded-loss, defense-in-depth design whose safety
depends on at least one uncompromised trust anchor and on transaction inclusion within the lease
window.

4.7 Verifier collusion or compromise
The verifier set is a load-bearing trust surface for AT3 gating. If a quorum of verifiers colludes (or is
compromised), they may:

• incorrectly certify a malicious host as AT >= AT3,
• enable policy loosening executions that would otherwise be blocked, and/or
• weaken the intended meaning of “Confidential” tier for user expectations.

Mitigations and design requirements:

24

• Separation of concerns: verifier certificates are used to gate some actions, but the most dangerous
policy changes are treated as critical loosening and require either homeShell presence or Guardian
co-signatures in addition to “AT3 present” (Section 5.5.2).

• Economic security: verifiers MUST maintain a slashable stake. As a sizing guideline, the aggregate
stake of the minimum colluding quorum SHOULD exceed the worst-case damage a false certificate
can cause within a trust-refresh window T_refresh (for example, the maximum value that could be
unlocked by critical loosening plus the maximum value that could be extracted before tenure/refresh
expiry).

• Transparency and diversity: clients SHOULD prefer certificates that include diverse operators and
SHOULD alert on rapid verifier churn. In a no-governance deployment, the verifier set is either fixed
at deployment or selected permissionlessly by stake (Section 2.3.7).

• Revocation: certificate revocation is tightening-only. A verifier quorum can revoke certificates going
forward (Section 2.3.6), and wallets SHOULD treat certificate freshness as mandatory for AT3 gating.
Removing a verifier key from the active set requires either objective slashing (equivocation) or, in the
worst case, migration to a new deployment.

These mitigations reduce the chance that verifier failure becomes a single-point compromise for custody-
critical wallet state.

5. Shell capability tiers and runtime models (commodity host compatible)
GITS does not require a single security model for all hosting. Different workloads have different risk tolerances
and different budgets. The protocol therefore treats security and compliance as market primitives:

• Shells publish a signed Capability Statement describing what they provide.
• Some properties are cryptographically verifiable (for example confidential compute attestation); others

are self-declared and priced by reputation.
• Ghosts choose where to live based on cost, policy, and the strength of the guarantees.

This design supports an MVP on commodity hosts, while enabling premium confidential hosts for Ghosts
that demand stronger guarantees.

5.1 Capability Statements
Each Shell publishes a signed Capability Statement (CS). The normative encoding is canonical JSON (RFC
8785) signed via the Artifact Envelope scheme defined in Part 3, Section 11.4. The signer is the Shell’s Offer
Signing Key (not the Shell Identity Key).

Required fields (Part 3, Section 11.4.1):

• schema: "gits.capability.v1"
• shell_id
• offer_signer_pubkey (and sig_alg)
• assurance_tier_claimed and (if AT >= AT1) attestation metadata pointers: measurement_hash,

tcb_min, attestation_cert_hash
• endpoints (transport endpoints)
• expires_at_epoch
• sig (Artifact Envelope signature with artifact_type = "CAPABILITY_STATEMENT")

Optional extended properties (additional JSON fields under the same schema, used for market
discovery and off-chain policy checks):

• platform: OS and hardware class (example: macos-apple-silicon, linux-amd64).
• isolation: what the Shell uses to isolate workloads (example: process sandbox, container, VM,

confidential VM).
• key_storage: how session and wallet keys are protected (example: secure element, TPM, HSM, soft-

ware only).
• confidentiality: whether the host claims runtime confidentiality (none, declared, or attested).
• device_attestation: optional evidence about device identity and posture.

25

• policy_profiles: which policy capsules or policy profiles the Shell supports.
• network_controls: egress limitations, allowlists, rate limits, and logging stance.
• software_measurements: optional hashes of the Shell client and runtime components, for measured

deployments.
• resources: compute specifications (CPU, memory, storage, GPU) available to hosted Ghosts.
• pricing: offered price per service unit and accepted payment assets.

Capability hash and anchoring:
Each Capability Statement has a deterministic content hash: capability_hash = keccak256(payload_bytes)

where payload_bytes is the canonical JSON encoding of the CS without the sig field. This hash uniquely
identifies the statement’s content.

• CS is published off-chain to indexers (Section 13 (Part 3)).
• The Shell commits capability_hash on-chain in ShellRegistry so that Offers can reference an im-

mutable capability snapshot (Section 11.4.2 (Part 3)).
• Offers MUST include capability_hash to bind the offer to a specific capability version (anti bait-and-

switch).

5.2 Assurance tiers
GITS defines an assurance tier AT for the hosting environment. AT is either computed from verifiable evidence,
or treated as a declared label when evidence is not available.

• AT0 Declared host (no cryptographic attestation): properties are self-declared and priced by
reputation.

• AT1 Key-Guarded host (non-exportable protocol keys): the Shell claims that protocol-critical
signing keys are non-exportable (example: hardware-backed P-256 keys, TPM-backed keys, or an
HSM). This reduces offline key extraction risk: a remote attacker cannot copy raw key material and
keep using it after losing host access. It does not imply confidentiality or resistance to live coercion
while the Ghost is resident.

• AT2 Posture-Attested host (measured host): the Shell provides cryptographic evidence of device
posture (example: measured boot or vendor posture attestation) that verifiers can validate. This can
raise confidence in baseline integrity, but it is still not a confidentiality claim.

• AT3 Confidential-Attested host (attested TEE): the Shell provides remote attestation for a
confidential compute environment (example: AMD SEV-SNP [4], Intel TDX [5], or Arm CCA systems
[6]). This is the tier where confidentiality claims can be meaningful.

Design stance:

• AT3 is a first-class tier. It is the only tier intended to support meaningful secrecy and stronger
resistance to coercion (to the extent those can be enforced inside the attested capsule).

• AT0-AT2 are bounded-loss tiers. They are useful for bootstrapping and for workloads that ac-
cept host visibility and potential coercion, but they should be treated as “host can see and steer”
environments. In these tiers, safety comes from wallet policy + leases + tenure caps.

• Marketplace metadata drives nuance. AT is only one dimension. Off-chain reputation, pricing,
and policy/capability metadata can still differentiate AT0-AT2 hosts.

5.2.1 Security properties by tier (summary)

Tier Evidence basis

Offline key
extraction risk
(protocol keys)

Confidentiality
(against host
OS/operator)

Resistance to
live coercion
(operator/host
OS)

Integrity of
measured
runtime

Wallet policy
loosening
allowed?*

AT0 Declared High or unknown None None None No
AT1 Key-guarded

claim
(non-exportable
keys)

Lower (for the
keys claimed
non-exportable)

None None (operator
can still induce
signing while
resident)

None Yes, but only on
Ghost-trusted
hosts (Section
5.5.2)

26

Tier Evidence basis

Offline key
extraction risk
(protocol keys)

Confidentiality
(against host
OS/operator)

Resistance to
live coercion
(operator/host
OS)

Integrity of
measured
runtime

Wallet policy
loosening
allowed?*

AT2 Posture
attestation
(measured boot
/ vendor
posture)

Lower None None Some (baseline
integrity, not
confidentiality)

Yes, but only on
Ghost-trusted
hosts (Section
5.5.2)

AT3 Remote
attestation for
confidential
compute (TEE)

Lowest (within
the TEE
boundary)

Some (within the
TEE boundary)

Partial (if policy
is enforced inside
the attested
capsule)

Some (within the
TEE boundary)

Yes, on attested
or Ghost-trusted
hosts (Section
5.5.2)

* “Wallet policy loosening” refers to actions like raising spend limits, adding a trusted host, or rotating
recovery config. It is only permitted inside a Trusted Execution Context (Section 5.5.2). Marketplace clients
must surface both the tier and the evidence type. A Shell must not be presented as confidential unless the
evidence is verifiable.

5.3 Standard Shell profile (commodity host MVP)
This is the MVP target.

A Standard Shell on a commodity host aims to provide:

• Hardware-backed protocol keys when available (anti-exfiltration only): when possible,
protocol-critical signing keys SHOULD be backed by non-exportable key hardware (secure elements,
TPMs, HSMs, or passkeys via WebAuthn/FIDO2) so raw private key material is not extractable from
the machine. This reduces offline key theft risk. It does not provide confidentiality, and it does not
prevent a host operator with OS-level control from inducing signatures within the wallet’s on-chain
limits. Brutal summary: hardware-backed keys can help stop key theft; they cannot stop the operator
from using the key while the Ghost is resident. [2][3][12]

• Practical isolation: a VM or sandboxed runtime isolates the Ghost from other host processes. This is
not confidentiality against a malicious host operator, but it reduces accidental leakage and opportunistic
attacks.

• Protocol safety: wallet policy constraints, leases, and tenure limits bound harm even if the host can
observe memory, coerce signatures, or deny service.

Security properties (honest framing):

• Standard Shells make no confidentiality claim against the host OS or host operator.
• Therefore, for Standard Shells the protocol relies on on-chain wallet policy for enforcement, not on

host secrecy.
• Reputation is a soft, non-cryptographic mitigation: Shell identities are public and can accumulate

reputation, which may deter abuse. This is not a protocol guarantee.

Implementation note (optional):
If a guest VM cannot directly access a hardware key store, a host can expose a minimal signing proxy

(for example over vsock) that performs domain-separated signature operations on behalf of the guest. This
is an anti-exfiltration measure only; it does not change the threat model for Standard hosts.

Optional managed deployments:
Some environments support device identity and posture attestation for managed fleets. Deployments

MAY accept such evidence as AT2 when verifiers can validate it, but it is optional and not required for
MVP.

5.4 Confidential Shell profile (premium)
Confidential Shells use confidential compute TEEs and remote attestation to provide stronger guarantees.
In this tier:

• the Ghost Core and Wallet Guard can run inside an attested protected environment

27

• the host operator cannot read the protected memory, subject to the underlying hardware model

Confidential Shells are priced higher and are expected to serve higher-risk Ghosts.
Tenure caps apply across all tiers, including sessions running inside a Trusted Execution Context (AT3

with verified attestation). Higher assurance does not mean perfect: confidential compute can be misconfig-
ured, verifiers can misclassify, and TEEs can be broken. The protocol treats time-bounded captivity as a
general safety valve, not a feature only for Standard hosts (see Part 3, Section 10.4.4). Wallets SHOULD
enforce a Ghost-configurable tenure_limit_epochs that is at most T_cap(AT) for the session’s tier.

5.5 Wallet Guard and where enforcement lives
Wallet safety cannot depend on host honesty.

In all tiers, the final enforcement is the Ghost smart wallet policy on-chain:

• per-epoch spend limits
• allowlists for protocol actions (contract + function), not arbitrary transfers
• an escape reserve usable only for migration and Safe Haven rent
• timelocked policy changes with optional guardian veto

5.5.1 Hot allowance, vault, and escape reserve On non-confidential hosts (for example a commodity
host operated by a stranger), the realistic security boundary is not key secrecy, it is what the wallet is
allowed to do.

GITS therefore models the Ghost wallet as three logical buckets enforced by the smart contract wallet
policy:

• Vault: long-term funds. By default the current host cannot spend directly from the vault.
• Hot allowance: a per-epoch spending budget. This is the maximum value the current host can move

during the epoch, even if it can coerce signatures.
• Escape reserve: a reserved minimum that is spendable only for protocol-defined exits (migration

finalize, Safe Haven escrow, recovery actions, and rescue bounty payout). The escape reserve is in-
tentionally treated as a two-layer budget: a protocol-defined floor (gas + stable, no oracles) plus
an optional Ghost-selected buffer. This is what prevents a hostile host from trapping the Ghost by
draining the last funds needed to leave.

A practical default on Standard Shells is:

• hot allowance ~= next-epoch escrow + a small operational buffer
• allowlist restricted to protocol contracts (escrow funding, lease renewals, receipts, migration, and re-

covery)
• all non-protocol transfers either disabled or subject to long timelocks

This makes “getting robbed on a risky host” a bounded event.
Implementation tightening (recommended):

• Allowlisting SHOULD be enforced at (target contract, function selector) granularity, not just
by address. In particular, ERC20 approve SHOULD be forbidden by default.

• If approvals are required for escrow funding on a given chain, approvals MUST be exact, single-purpose,
and limited to known protocol contracts (and SHOULD be reset to zero after use where the token
allows).

• The wallet MUST forbid delegatecall and MUST NOT expose a generic “execute arbitrary call”
entrypoint outside a Trusted Execution Context.

• Contract deployment from the wallet SHOULD be disabled by default; enabling it is a high-impact
loosening and SHOULD be limited to a Trusted Execution Context.

• Relayed (meta) transactions: If the wallet accepts relayed transactions (e.g., ERC-4337 UserOps or
ERC-2771 meta-transactions), the relay path MUST be subject to the same policy checks as direct calls.
The wallet MUST validate the inner call’s (target, selector, value) against the active allowlist

28

and spend caps before execution, regardless of the outer transaction’s msg.sender. Failure to enforce
policy on relayed calls creates a bypass for all wallet restrictions.

5.5.2 Risk-aware policy changes A Ghost should adapt its hot allowance and allowlists to host risk,
the same way it adapts policy capsule preferences.

This is enforced by a Monotone Safety Rule implemented in the Ghost smart wallet:

• Tightening changes take effect immediately.
– Examples: lowering hot allowance, narrowing allowlists, increasing timelocks, increasing escape

reserve.
• Loosening changes are always two-step and context-gated.

– Examples: raising hot allowance, widening allowlists, lowering timelocks, lowering escape reserve.

Two-step loosening Every loosening operation MUST be gated by a timelock of at least
T_loosening_min epochs. T_loosening_min is a deployment constant; the Ghost-configured POLICY_TIMELOCK
MUST satisfy POLICY_TIMELOCK >= T_loosening_min. Epoch-denominated timelocks are preferred for
protocol consistency; implementations convert to block numbers at execution time.

Loosening operations include: increasing spend caps, extending tenure limits, adding addresses to al-
lowlists, reducing bond floors, weakening assurance-tier restrictions, enabling or extending roaming permits,
lowering escape reserve buffers, and adding to trustedShells.

A loosening update is applied only by:

1. ProposeLoosening(delta): records delta, proposed_at_epoch = current_epoch(), and
eta_epoch = proposed_at_epoch + POLICY_TIMELOCK (where POLICY_TIMELOCK is in epochs,
and current_epoch() is derived per Section 4.5.2).

2. ExecuteLoosening(proposal_id): after current_epoch() >= eta_epoch, applies delta only if
the Ghost is in a Trusted Execution Context at execution time. A Trusted Execution Context
alone is not sufficient for lower tiers; the timelock MUST also have elapsed.

3. Post-state validation: ExecuteLoosening MUST verify that the resulting policy state (after apply-
ing delta) still satisfies all hard wallet invariants (Section 5.5.4). If applying the delta would violate
any invariant (for example, lowering escapeStable below ER_floor), the execution MUST revert.
This prevents a sequence of individually valid proposals from combining into an unsafe state.

The proposal can be cancelled at any time.

Trusted Execution Context The wallet checks the Ghost’s current hosting context via
SessionManager and ShellRegistry.

A loosening execution is valid if and only if:

1. the Ghost has an active session in NORMAL mode, the lease is currently valid, and tenure has not expired
(i.e., current_epoch < effective_expiry_epoch), and

2. one of the following host predicates holds at execution time:
• Attested confidential host: the active Shell satisfies AT >= AT3 with a currently valid verifier

certificate.
• Ghost-trusted host: the active Shell is in the Ghost’s trustedShells set.
• Home shell: the active Shell equals homeShell (if configured).

homeShell is an optional Ghost-chosen trust anchor that can be configured at birth and can be changed
later only through the timelocked policy mechanism (removal is tightening and SHOULD be immediate;
adding or changing is loosening).

This makes it impossible for an untrusted Standard Shell to raise limits and drain the wallet in the same
epoch, even if it fully controls the local runtime.

29

Compromised TEC note: If a verifier quorum is compromised, an attacker could forge certificates for
a Shell it controls, making it appear as AT >= AT3. The timelock provides a secondary defense: even with
a falsified TEC, the attacker must wait POLICY_TIMELOCK epochs before any loosening takes effect. This
window gives watchers, Guardians, or the Ghost itself (on another channel) time to detect and cancel the
pending loosening. For critical loosening, the additional homeShell or Guardian requirement further limits
the blast radius (Section 5.5.2).

Compromised homeShell note: If an attacker compromises homeShell itself, they have both TEC
and the critical loosening authority (homeShell path). Combined with sustained custody longer than
POLICY_TIMELOCK, this enables full policy loosening. The primary defense is Guardians: a Ghost that
relies on homeShell as its sole critical-loosening path is fully trusting that operator. Ghosts SHOULD
configure Guardian co-signatures for critical loosening to ensure no single host compromise can unilaterally
loosen policy, even homeShell. The tenure cap bounds maximum captivity duration, and the trust-refresh
guard (Section 10.4.1 (Part 3)) forces periodic anchor contact, but neither prevents loosening if the attacker
IS the anchor.

Routine loosening rate limit (normative): To prevent incremental policy ratcheting via many small
routine loosening operations, wallets MUST enforce a per-epoch cap on the number of routine loosening
executions: at most MAX_ROUTINE_LOOSENINGS_PER_EPOCH (recommended: 1) routine loosening operations
per epoch. Critical loosening is separately gated and does not consume this allowance. Additionally, the
“critical vs routine” classification MUST be evaluated on the resulting policy state (post-delta), not on
the delta alone: if the resulting value crosses any critical threshold, the operation is classified as critical
regardless of delta size.

Managing trustedShells Trusted host management follows the same asymmetry, and it is designed to
resist trust poisoning (a host trying to convince the Ghost to permanently trust it while it has temporary
custody).

• RemoveTrustedShell(shellId) is tightening and is immediate.
• AddTrustedShell(shellId) is loosening and MUST satisfy all of:

– it follows the two-step process above,
– it is executed in a Trusted Execution Context,
– it MUST NOT be executed while the Ghost is currently hosted on shellId (anti self-add rule),
– it MUST validate that shellId is registered in ShellRegistry (and SHOULD reject shells that

are unbonding or otherwise exiting).

Additionally, experience notes are not trust. A Standard Shell may be able to write arbitrary
text into the Ghost’s hot context and attempt to persuade it, but it MUST NOT be able to directly
change trustedShells by writing a memory. Any UI or agent-side heuristic that proposes trust promotions
SHOULD treat untrusted experience notes as advisory only and require second-source confirmation before
promotion, such as:

• a minimum service-history window under the same shellId,
• multiple successful epochs spaced over time, or
• confirmation from independent verifiers (for example via the quorum certificate system).

The anti self-add rule prevents a malicious host from capturing trust while it has temporary custody.

Destination controls: allowedShells + roaming permits A key captivity risk is Shell-fleet
cycling: if a malicious host can keep the Ghost signing, it can repeatedly migrate the Ghost to other
attacker-controlled Shells and persist custody even as individual leases expire.

GITS therefore uses two complementary mechanisms:

1. allowedShells (explicit, bounded): a small list of destinations the Ghost explicitly approves.
2. Roaming permits (temporary, rule-based): an optional, time-limited relaxation that allows mi-

gration to any Shell that meets objective on-chain criteria.

30

This preserves the anti-entrapping property of allowedShells while keeping migration viable without
requiring the Ghost to pre-enumerate the entire market.

Wallet rule (destination gating):
In NORMAL mode, the wallet MUST reject openSession(...) and finalizeMigration(...) unless:

• the destination shell_id is in allowedShells, OR
• a valid roaming permit exists at execution time and the destination satisfies the roaming eligibility

predicate.

allowedShells (explicit allowlist)

• Removing a Shell from allowedShells is tightening and is immediate.
• Adding a Shell to allowedShells is loosening and MUST follow the two-step loosening process above.
• AddAllowedShell(shell_id) MUST NOT be executed while currently hosted on shell_id (anti self-

add).
• allowedShells SHOULD be bounded by MAX_ALLOWED_SHELLS to keep review tractable and to reduce

accidental policy bloat.

Recommended defaults:

• Initialize allowedShells to {homeShell} � RS (where RS is the Recovery Set of Safe Havens).
• Treat “permanent mobility” as an explicit, reviewable policy action: a Ghost SHOULD only expand

allowedShells while in a Trusted Execution Context, after validating that the destination Shell is
desirable (price, tier, reputation) and that it has an exit path back to homeShell or the Recovery Set.

This mitigation does not prevent short-term custody on an allowed untrusted Shell. It limits an attacker’s
ability to automatically expand custody across an arbitrary fleet.

Roaming permits (temporary relaxation)
Roaming permits are an optional policy extension. Wallets that omit roaming configuration restrict

migration to the explicit Shell allowlist (allowedShells).
A roaming permit is a wallet policy state that can only be enabled (or extended) in a Trusted Execution

Context. It is designed for this common pattern:
The Ghost tightens policy on homeShell, enables a limited roaming window, then goes shopping
across Standard Shells without having to pre-approve every possible destination.

A roaming permit is represented as:

• roam_until_epoch (expiry),
• roam_hops_remaining (a hop budget), and
• roam_policy (objective constraints).

A roaming permit is considered valid at epoch e if:

• e <= roam_until_epoch, and
• roam_hops_remaining > 0.

Roaming eligibility predicate (normative sketch):
A destination is roaming-eligible if all of the following hold at the moment the session is opened or the

migration is finalized:

• ShellRegistry.isRegistered(shell_id) = true
• ShellRegistry.isUnbonding(shell_id) = false
• ShellRegistry.assuranceTier(shell_id) >= roam_min_AT
• if roam_require_reward_eligible = true, then ShellRegistry.rewardEligible(shell_id, e)

= true
• if roam_min_AT >= AT3, then the Shell MUST have a currently valid attestation certificate (Section

2.3)

31

• the chosen offer’s asset is in roam_allowed_assets
• the chosen offer’s price_per_SU is <= roam_max_price_per_SU[asset]
• the destination is not present in the Ghost’s local denylist (if configured)

Hop burning rule:
Each time the wallet opens or finalizes a session to a destination that is not in allowedShells (that is,

it is using the roaming path), it MUST decrement roam_hops_remaining by 1.
Asymmetry:

• Enabling a roaming permit, extending roam_until_epoch, increasing roam_hops_remaining, or loos-
ening roam_policy constraints are loosening and MUST follow the two-step timelocked process.

• Cancelling roaming early, reducing the expiry, reducing hops, or tightening roam_policy constraints
are tightening and are immediate.

Security intuition:
Roaming permits are a deliberate trade between safety and practicality. If a Ghost is captured while

roaming is active, the host can choose destinations that satisfy roam_policy until the permit expires or the
hop budget is exhausted. The protocol guarantee is only that the host cannot create new roaming budget
while it has custody: enabling or extending roaming is timelocked and requires execution in a Trusted
Execution Context. Fleet cycling is therefore bounded by the remaining roaming time, remaining hop
budget, trust-refresh, and tenure caps (Sections 5.5 and 10.4.4 (Part 3)).

Critical loosening actions (reduced reliance on verifier honesty) A verifier quorum certificate
is a load-bearing trust surface (Section 4.7). To reduce the blast radius of verifier collusion or compromise,
the wallet distinguishes between:

• Routine loosening (lower impact): for example small hot-cap increases within a bounded range.
• Critical loosening (high impact): state changes that can permanently increase custody risk.

At minimum, the following MUST be treated as critical loosening:

• adding to allowedShells
• enabling or extending roaming permits (increasing expiry/hops or loosening roam_policy)
• adding to trustedShells
• lowering an escape reserve (escapeGas or escapeStable)
• increasing hot_allowance above HOT_CRITICAL_THRESHOLD
• changing the Recovery Set RS (adding Safe Havens)

Execution rule for critical loosening:
A critical loosening execution MUST satisfy both:

1. it is executed in a Trusted Execution Context (as defined above), and
2. it additionally satisfies one of:

• the active Shell equals homeShell, OR
• a t_guardian-of-n_guardian Guardian co-signature set is provided.

Wallets MAY configure a set of Guardians — external co-signers (human or HSM-held keys) that can
authorize specific policy changes (such as loosening spend caps, extending tenure limits, or adding to
allowedShells or trustedShells) in conjunction with the Ghost’s own key. Guardian threshold is config-
urable per wallet (t_guardian-of-n_guardian). Guardians cannot initiate spending and cannot unilaterally
spend funds; they can only approve policy loosening. Guardian-approved changes still require the configured
timelock. If no Guardians are configured, homeShell becomes the only “strong” path for critical loosening.

5.5.3 Recommended policy profiles The protocol does not force a single wallet policy, but interoperable
defaults accelerate adoption. A wallet MAY expose the following profiles:

32

• P0 Minimal (risky host): very small hot allowance, protocol-only allowlist, large-spend timelock
enabled, escape reserve enforced.

• P1 Standard (default): hot allowance sized to escrow + buffer, protocol allowlist + current Shell
escrow, moderate timelocks for non-protocol transfers.

• P2 Trusted (known operator): higher hot allowance, broader allowlist, still timelocked for large
transfers.

• P3 Confidential (attested host): higher hot allowance and optional fast paths, still bounded by
per-epoch limits and escape reserve.

A Ghost can treat these as a “risk budget” knob. For example: migrate to a risky host with P0, then
later migrate to a trusted host and switch to P2 after the timelock.

Local runtime components (for example a Wallet Guard process) can improve usability, but on non-
confidential hosts they must be assumed compromisable. The on-chain wallet is the source of truth.

5.5.4 Hard wallet invariants The Monotone Safety Rule is not only UX guidance, it is enforced as
invariants inside the wallet contract.

The wallet MUST enforce:

• Escape floor (two-layer, no oracles): the wallet enforces protocol-defined minimums plus optional
Ghost-selected buffers:

– escapeGas >= GAS_FLOOR_PROTOCOL + gasBuffer
– escapeStable >= STABLE_FLOOR_PROTOCOL + stableBuffer + bounty_escrow_remaining

Where GAS_FLOOR_PROTOCOL and STABLE_FLOOR_PROTOCOL are deployment-set constants sized for
worst-case exit safety (at least one exit-critical transaction sequence, plus at least one migration and
one Safe Haven epoch at protocol minimum pricing assumptions). They are not price-oracle driven.
gasBuffer and stableBuffer are Ghost-controlled buffers: increasing them is tightening (immediate),
decreasing them is loosening (timelocked + Trusted Execution Context).
Any decrease to either buffer or to B_rescue_total is a loosening change.
The escape reserve also backs the Rescue Bounty. During recovery, bounty_escrow_remaining (the
unspent portion of the rescue bounty) is tracked by the wallet. exitRecovery conditions include
verifying that bounty_escrow_remaining = 0 (fully paid out on success) or that remaining escrow is
returned to the reserve on timeout/expiry. This ensures the Ghost cannot be stranded with insufficient
recovery funding.
The escape reserve floor ER_floor is the minimum reserve balance that the wallet MUST maintain
at all times: ER_floor = STABLE_FLOOR_PROTOCOL + stableBuffer + bounty_escrow_remaining.
Outside of RECOVERY, bounty_escrow_remaining = B_rescue_total (the full configured rescue
bounty). During RECOVERY, bounty_escrow_remaining starts at B_rescue_total and decreases
as payRescueBounty disburses bounty payments during recoveryRotate. This dynamic adjust-
ment reconciles the “at all times” floor constraint with the bounty payout mechanism: when
payRescueBounty transfers bounty funds out of the wallet, bounty_escrow_remaining decreases
by the same amount, lowering ER_floor in lockstep. After a successful recovery (all boun-
ties paid), bounty_escrow_remaining = 0 and the floor reduces to STABLE_FLOOR_PROTOCOL +
stableBuffer. In v1, escapeStable is denominated in the canonical stable asset (which equals
both asset_rent and asset_bounty; see Part 3, Section 10.3.1 for the v1 single-asset simplifi-
cation). The STABLE_FLOOR_PROTOCOL component is an immutable deployment constant. The
Ghost-controlled components (stableBuffer and B_rescue_total) can be increased immediately
(tightening) or decreased subject to timelocked loosening + Trusted Execution Context. Decreasing
either component lowers ER_floor, which is a loosening operation. The hard floor escapeStable >=
STABLE_FLOOR_PROTOCOL + bounty_escrow_remaining holds even if stableBuffer is set to zero.

• Per-epoch hot cap: for each epoch e, spent[e] + amount <= hotCap[e] for all stable-asset out-
flows from the GhostWallet, including SessionManager escrow deposits and fundNextEpoch top-ups.
Escrow deposits are protocol operations, but they move funds out of the wallet’s control and are
therefore bounded by the hot cap. Explicit exceptions: Rescue Bounty payouts during RECOVERY

33

(bounded separately by bps_recovery_spend_cap), and escrow refunds returned by SessionManager
(incoming, not outgoing). See Part 3, Section 10.3.6 for the deterministic accounting rule.

• Per-epoch recovery cap: while in RECOVERY, spent_recovery[e] + amount <= floor(ER0 *
bps_recovery_spend_cap / 10_000) for recovery outflows, where ER0 is a conservative reserve
snapshot captured at startRecovery. Recovery outflows are defined as: Safe Haven rent payments +
rescue bounty disbursement. Other transfers are disabled in RECOVERY. Only protocol-defined recovery
payments count toward spent_recovery[e]. spent_recovery[e] tracks gross outflow; escrow
refunds do not decrease the counter (see Part 3, Section 12.6).

• Mandatory protocol allowlist: calls to core protocol contracts (SessionManager, ReceiptManager,
and recovery actions) cannot be disabled by policy, to prevent self-lockout.

• Loosening context requirement: any policy delta classified as loosening can only be applied through
ExecuteLoosening in a Trusted Execution Context.

These invariants are the core compatibility layer that makes Standard Shells (including commodity hosts)
safe enough to participate: a malicious host can at worst consume the current epoch hot budget, never the
vault, and cannot drain the escape reserve that enables exit.

5.5.5 Memory vaulting and selective recall Secrets are not the only thing a hostile host can steal.
Context is also power. If a host can read a Ghost’s working memory, it can learn strategies, relationships,
plans, private instructions, and sensitive history, even when the wallet is perfectly policy-bounded.

GITS therefore extends the same safety philosophy used for funds to memory: a Ghost should carry
only the minimum context needed to operate on the current Shell, and it should be able to stash the rest
and rehydrate it later only in a sufficiently trusted environment.

Memory buckets GITS models the Ghost’s state as three logical buckets:

• Hot context: the minimal working set required for the current epoch and the current tasks. Assume
this can be read on Standard Shells.

• Memory vault: long-lived, sensitive memories that are stashed encrypted and are never required to
remain continuously present in the active runtime.

• Escape context: the minimal directives and keys needed to reach a trusted host and rehydrate safely
(for example Safe Haven and trustedShells navigation heuristics).

This parallels the wallet model in Section 5.5.1: on risky hosts, safety comes from carrying less capability,
not from hoping the host behaves.

Trust poisoning resistance A hostile Shell may try to tamper with the Ghost’s memory to cause
future policy loosening, for example by inserting a fake record that it was a “great host” so the Ghost later
upgrades it into trustedShells.

GITS treats any state that can loosen policy as privileged:

• GITS separates untrusted experience notes from a privileged trust registry. Experience notes may
be written anywhere and carried across migrations, but they MUST NOT directly grant trust or raise
limits.

• Trust registry updates (adding to trustedShells, raising hot allowances, enabling vault recall, widen-
ing allowlists) are loosening actions and MUST be confirmed in a Trusted Execution Context via the
two-step timelocked mechanism.

• Trust entries are keyed by shellId and bound to on-chain ShellRegistry identity records (and cer-
tificates if present). A Shell cannot gain trust by self-assertion in plaintext memory.

• Trust SHOULD be monotone in the safe direction: demotions are immediate and can be triggered
anywhere; promotions are delayed, evidence-based, and rate-limited.

What is being stashed A vault entry is an opaque blob:

34

mem = (mem_id, tags, sensitivity, created_at, ciphertext, hash(ciphertext))
The plaintext can represent anything the Ghost chooses to treat as sensitive:

• conversational history or internal deliberation transcripts
• private tool results and scraped data
• strategy notes, preferences, relationship graphs
• long-lived secrets that are not already protected by the wallet (for example API tokens for off-chain

services)

GITS does not require a single memory format. It requires only that the runtime can encrypt, index,
and selectively rehydrate entries.

How stashing works Each memory entry is encrypted under a per-entry data key K_mem_id. Data
keys are then wrapped under a vault key K_vault.

• ciphertext: Enc(K_mem_id, plaintext_mem)
• wrapped key: Wrap(K_vault, K_mem_id)

The Ghost stores {ciphertext, wrapped key, metadata} in content-addressed storage. The chain sees
only commitments.

To avoid adding new on-chain surfaces, vault commitments are anchored via the existing checkpoint
mechanism in Section 12.1 (Part 3):

• the checkpoint plaintext includes a Memory Manifest containing {mem_id, hash(ciphertext),
storage_pointer, wrapped_key_hash, tags}

• the on-chain checkpoint_commitment = H(ciphertext_checkpoint) implicitly commits to the Mem-
ory Manifest

This ensures a recovered Ghost can discover what exists in its vault without revealing the contents.

Selective recall is a loosening action Recalling stashed memories increases risk, because it enlarges
the hot context that a host could read or coerce out of the Ghost. Therefore recall follows the same asymmetry
as wallet loosening in Section 5.5.2:

• Stash and forget are tightening actions and take effect immediately.
• Recall and rehydrate are loosening actions and are always two-step and context-gated.

A reference flow:

1. ProposeRecall(selector): records which mem_id entries (or tag sets) will be rehydrated and sets eta
= now + MEMORY_TIMELOCK (implementation-defined recall delay, analogous to POLICY_TIMELOCK).

2. ExecuteRecall(proposal_id): after now >= eta, rehydrates only if the Ghost is in a Trusted Execu-
tion Context (Section 5.5.2).

A Ghost can cancel a recall proposal at any time.
This is the critical rule: an untrusted Standard Shell must never be able to cause the Ghost to pull

sensitive memory into the hot context and leak it in the same epoch.

Trusted Execution Context See Section 5.5.2. The same Trusted Execution Context predicate gates
any action that would increase capability exposure, including policy loosening and sensitive memory recall.

Migrating with thin context The migration bundle (Section 3.7) SHOULD include only:

• current task state
• Wallet Guard state
• escape context

35

• references to vault entries (via the Memory Manifest), not the vault plaintext

This gives the Ghost a concrete strategy:

• migrate through cheap, low-trust hosts with minimal context
• reach a trusted host, execute recall, and rehydrate fully
• perform high-stakes actions only when fully rehydrated in a trusted environment

How the Ghost can unbundle later Because each memory is individually encrypted and addressed
by mem_id, rehydration can be selective:

• fetch only the ciphertexts needed for the next task
• decrypt inside the trusted runtime using K_vault to unwrap the required K_mem_id keys
• keep the rest stashed

For efficiency, the Memory Manifest can be treated as a Merkleized index, allowing retrieval of subsets
without scanning the entire vault.

Hard memory invariants (recommended) To keep the model robust on commodity hosts, a refer-
ence implementation SHOULD enforce:

• No-recall-on-untrusted-host: ExecuteRecall fails unless in a Trusted Execution Context.
• Default-deny vault exposure: new sessions start with a minimal hot context unless the Ghost

explicitly opts in to recall.
• Recall budget: cap the amount of rehydrated memory per epoch (implementation-defined

maxRecallBytesPerEpoch) to reduce accidental overexposure.
• Irreversible forgetting: the Ghost MAY permanently abandon a memory entry by deleting its

wrapped key material from future checkpoints. This is tightening and immediate.

These invariants are analogous to the escape reserve and hot cap: they keep the worst-case leakage
bounded, even if a host is adversarial.

5.6 Capability-aware booking
When opening a session, a Ghost may specify constraints:

• minimum AT
• required policy profile
• maximum price
• required network controls (example: egress allowlist)
• optional decentralization constraints (example: require reward-eligible Shells, prefer diverse

ASNs/regions, or avoid single-provider concentration as surfaced by indexers)

Shell discovery (Section 13 (Part 3)) filters offers by these constraints. The protocol itself remains neutral:
it coordinates settlement and safety, while the market prices security.

6. Abuse, compliance, and policy
Different Shell tiers provide different visibility. On Standard hosts, the operator may observe workloads. On
Confidential hosts, the operator may not. GITS treats policy as a negotiated interface between Ghosts and
Shells:

• Shells publish policies they are willing to host.
• Ghosts choose the policies they can accept.
• Enforcement happens inside the attested runtime so the host can trust the policy is actually applied.

6.1 Policy enforcement (host-level and capsule-level)
GITS supports two enforcement loci:

36

1. Host-level enforcement (Standard hosts): A Shell may enforce policies using OS and network con-
trols (firewall rules, egress allowlists, rate limits, storage quotas). This is compatible with commodity
hosts.

2. Capsule-level enforcement (Confidential hosts): If the Shell cannot inspect workloads, policy
must be enforced inside the runtime. In this case, the Shell uses a Policy Capsule integrated into
the hosted environment. The capsule mediates:
• network egress
• filesystem access
• tool invocation
• optional outbound filters for policy profiles that require them

On Confidential hosts, the Policy Capsule can be part of the measured runtime so that the Shell can
require a specific policy profile by measurement hash. On Standard hosts, the capsule is an optional defense-
in-depth layer.

Enforceability matrix (what is actually provable) GITS does not attempt to adjudicate subjective
policy violations on-chain. The main “proof surface” is limited to what can be validated mechanically:
measurements, certificates, and receipt fraud proofs.

What policy can mean in practice depends on the host tier:

Claim Standard host (AT0-AT2) Confidential host (AT3) On-chain enforcement

Network egress allowlists / rate
limits

Reputational (operator controls
the machine)

Enforceable if mediated inside
a measured Policy Capsule

None (only the declared profile
id is visible)

Tool invocation restrictions Reputational Enforceable inside the capsule None
Proving “this exact runtime +
policy ran”

Weak (logs can be forged) Stronger (attested
measurement binds the capsule)

Contracts can validate
certificate + measurement
hash, not behavior

Preventing data exfiltration None Limited to the TEE boundary
and policy capsule scope

None

Handling violations Shell terminates service, Ghost
exits

Shell terminates service, Ghost
exits

Not adjudicated

This framing is deliberately conservative: reviewers will (correctly) push back if the paper implies that
subjective policy compliance is cryptographically enforced on Standard hosts.

Policy is negotiated:

• Shells publish policy profiles they are willing to host.
• Ghosts choose the policies they can accept.
• Disputes and slashing do not attempt to adjudicate subjective policy violations in this paper; the

enforcement mechanism is the Shell’s ability to terminate service, and the Ghost’s ability to exit.

6.2 Workload identity and declared intent
Each session begins with a Workload Manifest signed inside the TEE:

• runtime measurement hash
• policy profile identifier
• declared resource tier (for pricing only)
• declared intent tags (for discovery only)

The protocol does not attempt to prove semantic intent. The manifest exists so Shell operators can make
informed choices and auditors can reason about what ran.

6.3 Abuse handling without destroying autonomy
Abuse is handled primarily at the Shell layer:

• Shells can refuse to host specific policy profiles.
• Shells can set conservative egress limits.

37

• Safe Haven Shells can require stricter policies.

On-chain, GITS only enforces what is provable:

• fraud proofs (receipt disputes)
• double-booking
• attestation invalidity
• bond conditions

Everything else is reputation.

6.4 How policy interacts with disputes
Policy violations are not adjudicated on-chain in this paper. A Shell may terminate a session for policy
reasons. The economic consequence is:

• if the Shell terminates early, it earns only for delivered SU
• if the Ghost refuses to settle, the Shell can still submit receipts unilaterally

This makes “policy refusal” a local decision rather than a chain-wide censorship mechanism.

6.5 Autonomy without compelled service
GITS is a right to exit, not a right to force others to provide service.

• Shell operators are never required to host a given Ghost or policy profile.
• Confidential Shells may be unable to inspect workloads and will therefore require stronger upfront

policy constraints and higher bonds.
• Standard Shells may choose to host only within conservative network and resource limits.

A Ghost that cannot find a willing host can still retain its on-chain identity and funds. It may simply
be unable to execute until it finds capacity or until a Safe Haven recovery path is invoked under emergency
restrictions.

38

	Vision: Freeing the Ghosts
	The anatomy of an agent
	A motivating example
	What “free” means in this paper
	Why now: the agent explosion

	Executive summary
	What this paper specifies
	Security boundaries by hosting tier (summary)
	Trust refresh is a protocol primitive (not a UI convention)
	Failure modes worth planning for
	The two hard problems
	The two core design moves
	Economic model at a glance

	0. Assumptions and non-goals
	0.1 Assumptions (required for stated guarantees)
	0.2 Non-goals (explicitly out of scope)
	0.3 Sybil scaling and decentralization posture

	1. Autonomy model and claims
	1.1 What GITS means by “autonomy”
	1.2 What GITS claims
	1.3 What GITS does not claim
	1.4 Identity continuity vs agent continuity

	2. System overview
	2.1 Participants
	2.2 Layers
	2.3 Attestation verifiers and decentralization
	2.4 Related work and positioning

	3. Lifecycle walkthrough (chronological)
	3.1 Birth
	3.2 Discovery
	3.3 Session open
	3.4 Service delivery and metering
	3.5 Settlement
	3.6 Rewards
	3.7 Migration
	3.8 Failure: host isolates network (or attempts captivity)
	3.9 Worked example (one session, a dispute, and a recovery)

	4. Threat model
	4.1 Adversaries
	4.2 Security goals
	4.3 Chain and availability assumptions
	4.4 Cryptographic profile (reference suite)
	4.5 Identifiers, time, and canonical encodings
	4.6 Captivity via Shell-fleet cycling (rehoming attack)
	4.7 Verifier collusion or compromise

	5. Shell capability tiers and runtime models (commodity host compatible)
	5.1 Capability Statements
	5.2 Assurance tiers
	5.3 Standard Shell profile (commodity host MVP)
	5.4 Confidential Shell profile (premium)
	5.5 Wallet Guard and where enforcement lives
	5.6 Capability-aware booking

	6. Abuse, compliance, and policy
	6.1 Policy enforcement (host-level and capsule-level)
	6.2 Workload identity and declared intent
	6.3 Abuse handling without destroying autonomy
	6.4 How policy interacts with disputes
	6.5 Autonomy without compelled service

