
GITS: Token Economics and Deployment
Nakamolto

nakamolto@protonmail.com
gits.sh

7. Token economics
7.1 Design goals

1. Bootstrap early participation without a pre-mine.
2. Avoid identity-count based farming.
3. Make long-run inflation approach zero.
4. Keep the market primary: rent should dominate protocol rewards over time.
5. Make reward farming and sybil scaling increasingly expensive and time-constrained (but not “impossi-

ble”).
6. Introduce an adaptive sink that can scale with usage as emissions decline.

7.2 What the token is (and is not)
GIT is a protocol token used for:

• protocol rewards (emissions)
• optional staking for certain protocol roles (for example verifier staking), but Shell registration and Safe

Haven bonds (B_safehaven_min) are hard-asset collateral, not GIT (Section 10.1.1 (Part 3))

GIT is not a governance token (parameters are immutable per deployment), not a stablecoin (not pegged
to any unit), not a claim on a treasury, and not required for exit-critical paths. Rent is stable-denominated;
GIT is a volatile protocol token used only for emissions and optional staking.

No initial distribution: this paper assumes a zero-premine launch. The initial supply at genesis is
zero, and there is no founder or investor allocation. GIT is minted only by the protocol’s emission rules
described below.

7.2.2 Deriving durable utility from GIT (beyond emissions) A protocol token has durable utility
only if at least one of the following is true:

1. the token is required to perform a protocol action (a fee token),
2. the token is posted as stake by actors who want protocol influence or revenue (staking utility), or
3. the token is the unit of account for a large share of real economic flows in the system (for example

rent).

GITS intentionally keeps rent stable-denominated for predictable pricing and to avoid forcing Ghosts
to take token price risk just to buy compute. That design choice weakens “rent drives token demand” by
default, so the paper makes the token utility explicit:

• Verifier staking: verifiers post stake to co-sign attestation certificates. In a zero-premine launch this
is typically bootstrapped with stable-asset staking, with optional dual staking in GIT once supply is
meaningful (Sections 2.3.2 (Part 1), 2.3.7 (Part 1)). As the system’s confidential tiers matter more,
the value of being a verifier (and the stake at risk) should rise.

• Protocol fees on non-liveness actions (withheld via mint reduction): deployments SHOULD
enable small GIT-denominated fees on actions that are not required for exit safety (Section 7.9.2). This
creates steady, usage-linked demand without putting a token requirement on exit-critical paths.

• Optional GIT-denominated offers: nothing prevents Shells from quoting rents in GIT (or offering
discounts for paying in GIT). This is a market choice, not a protocol requirement.

1



Why “just denominate rent in GIT” is not automatically enough:

• If rent is forced to be in GIT, users inherit token volatility as an operating cost. This can reduce
adoption, especially for agents that budget in stable terms.

• If rent is allowed to be in either asset, the stable asset often wins for convenience, so token demand
becomes optional.

• Even if some hosting is offered at zero price (for marketing or subsidies), the protocol can still have
token demand via staking and fee sinks.

The design stance in this paper is therefore: keep rent stable for UX, and make token utility
come from staking + withheld protocol fees (mint reduction).

7.3 Emissions schedule (disinflationary)
Let e be epochs since genesis (an integer epoch index). Define the scheduled emission per epoch:

𝐸𝑠𝑐ℎ𝑒𝑑(𝑒) = 𝐸0 ⋅ 2−𝑒/𝐻 + 𝐸𝑡𝑎𝑖𝑙

Where:

• E_0 is scheduled issuance at genesis (per epoch).
• H is the emission half-life in epochs. (In this document, H always denotes the half-life; hash functions

use explicit notation such as keccak256.)
• E_tail is an optional small tail emission (per epoch). If E_tail = 0, supply is capped.

This yields high issuance early and asymptotically low issuance later.
Scheduled emission is a cap. Actual minting in epoch e is u_total(e) * E_sched(e) (Section 7.5). If

there is no eligible activity, nothing is minted and the unissued portion is not carried forward.
Interpretation note: in the suggested MVP parameterization where EPOCH_LEN = 1 day, “per epoch”

can be read as “per day.” A deployment fixes E_0, H, and E_tail at genesis.

7.4 Pools
Each epoch, the protocol allocates participant emissions into two pools:

• Shell pool: alpha_bps
• Ghost pool: beta_bps

With alpha_bps + beta_bps = 10_000 (basis points).
For formulas that require fractional multipliers, use alpha_bps / 10_000 and beta_bps / 10_000. In

integer-only contexts, multiply first and then divide by 10_000 (i.e., alpha_bps * x / 10_000) to avoid
precision loss.

This design intentionally does not include a protocol-controlled “Safety Fund” pool. Recovery is funded
by the Ghost’s enforced escape reserve, including the protocol-defined Rescue Bounty (Section 12.2.1 (Part
3)) and recovery rent escrow.

7.5 Usage-capped minting (eligible activity only)
If the network is tiny, dividing a fixed emission by a small SU_total creates extreme per-unit rewards. GITS
therefore caps minting by activity.

A Service Unit (SU) represents one mutually signed heartbeat interval between a Ghost and a Shell (see
Section 10.2 (Part 3)).

Let:

• A_target: target number of active sessions for full distribution.
• SU_target = N * A_target, where N = EPOCH_LEN / Delta is the intervals-per-epoch constant.
• SU_total: total accepted Service Units in the epoch across all accepted receipts (used for mar-

ket/accounting visibility).

2



• SU_eligible: total accepted Service Units in the epoch where both the Shell participant and the Ghost
participant are reward-eligible at that epoch. Shell eligibility requires: bonded in a hard asset, aged,
not unbonding, and with sustained uptime (Section 7.6.2). Ghost eligibility requires: bonded, aged,
and not unbonding (Section 7.6.2, ghost_reward_eligible). Including only doubly-eligible receipts
prevents emissions amplification by Ghost-ineligible sessions (see Part 3, Section 10.6).

Only SU_eligible counts toward protocol emissions. This is intentional: mutually signed heartbeats
are not proofs of useful compute (Section 0.2 (Part 1)), and on Standard hosts signatures can be coerced
(Section 10.5.1 (Part 3)). By tying emissions to reward-eligible Shell participation, minting is at least
anchored to capital at risk and time-on-network.

Define utilization:

𝑢𝑡𝑜𝑡𝑎𝑙 = min(1, 𝑆𝑈𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒
𝑆𝑈𝑡𝑎𝑟𝑔𝑒𝑡

)

Then pool minting is:

𝐸𝑔ℎ𝑜𝑠𝑡(𝑒) = 𝛽𝑏𝑝𝑠
10 000 ⋅ 𝑢𝑡𝑜𝑡𝑎𝑙 ⋅ 𝐸𝑠𝑐ℎ𝑒𝑑(𝑒)

𝐸𝑠ℎ𝑒𝑙𝑙(𝑒) = 𝛼𝑏𝑝𝑠
10 000 ⋅ 𝑢𝑡𝑜𝑡𝑎𝑙 ⋅ 𝐸𝑠𝑐ℎ𝑒𝑑(𝑒)

(In integer arithmetic: to avoid premature truncation from Q64.64 quantization of u_total, the nor-
mative computation (Part 3, Section 10.6) uses a direct mulDiv path: if SU_eligible < SU_target, then
E_ghost(e) = mulDiv(E_sched(e) * beta_bps, SU_eligible, 10_000 * SU_target) using 512-bit-
safe floor division. If SU_eligible >= SU_target, then E_ghost(e) = floor(E_sched(e) * beta_bps
/ 10_000). Similarly for E_shell. A Q64.64 u_total_q = min(Q, SU_eligible * Q / SU_target) is
emitted for observability but is not the source of truth for mint amounts.)

Total minted in the epoch is E_ghost(e) + E_shell(e).
Any portion not justified by eligible activity (low u_total) is not minted.

7.6 Reward weighting: passports and dwell decay (anti-farming)
Service Units (SU) are necessary for rewards but not sufficient: a mutually signed heartbeat is not a proof
of useful compute (Section 0.2 (Part 1)). The protocol therefore weights rewards to discourage “same-pair”
farming and to encourage mobility across independent hosts.

For each accepted receipt r, define:

• SU(r) as in Section 10.2 (Part 3)
• W(r) as the reward weight for that receipt

The protocol defines:

𝑊(𝑟) = 𝑆𝑈(𝑟) ⋅ 𝑤𝑝𝑎𝑠𝑠𝑝𝑜𝑟𝑡(𝑟) ⋅ 𝑤𝑑𝑤𝑒𝑙𝑙(𝑟)

Rewards are distributed proportional to W(r) rather than raw SU(r).

7.6.1 Dwell decay Let c be the number of consecutive epochs the Ghost has been hosted on the same
shell_id (including the current epoch). Define:

𝑤𝑑𝑤𝑒𝑙𝑙(𝑟) = 2− min(⌊(𝑐−1)/𝐷⌋, 63)

Where D is a deployment parameter (“halving step in epochs” for dwell rewards). Intuition: the longer
a Ghost stays on one Shell, the less marginal reward that session earns.

In fixed-point arithmetic, define:

3



• k = min(floor((c-1)/D), 63)
• w_dwell_q = Q >> k where Q = 2^64; minimum value is 2 (when k = 63).

The exponent is capped at 63 to ensure w_dwell_q is always positive. After 63*D consecutive epochs on
the same Shell, dwell weight reaches its floor of 2^{-63} and stays there.

This stepwise form avoids non-integer exponent math and is implementable on-chain via integer division
and bit-shifts (Section 7.6.4). This creates an incentive for hosts to allow departure rather than keep a
captured Ghost indefinitely.

Dwell decay is orthogonal to the on-chain tenure cap (Section 10.4.4 (Part 3)). The tenure cap is an
enforceable safety valve; dwell decay is an economic pressure.

Dwell counter reset (normative): The consecutive-epoch counter c is derived from residency_start_epoch
stored in the session record (Part 3, Section 10.4.4). When a Ghost migrates to a different shell_id, a new
session is opened with a fresh residency_start_epoch = current_epoch, resetting c to 1. When a Ghost
closes and reopens on the same shell_id, residency_start_epoch MUST be preserved (not reset) to
prevent trivial dwell-decay gaming via close/reopen cycles. The dwell_last_epoch[ghost_id][shell_id]
mapping tracks the last active epoch per pair; it is written to current_epoch at closeSession time. At
openSession, if current_epoch - dwell_last_epoch[ghost_id][shell_id] <= 1, the session is treated
as a continuation for dwell purposes (residency_start_epoch preserved). Entries where current_epoch -
dwell_last_epoch > 1 are semantically dead; implementations MAY lazily delete them on access for a
storage-refund gas benefit.

Churn and liquidity note: dwell decay intentionally creates continuous competitive pressure and encour-
ages periodic reassessment and migration. This can look like “churn,” but in this design churn is a feature:
it increases market liquidity and price discovery for hosting, and it reduces the ability of incumbents to coast
on past reputation. Deployments can tune D and the passport cooldown C_passport to avoid pathological
thrashing and keep migration overhead within acceptable bounds.

Brief-migration dwell reset (acknowledged): A Ghost can reset its dwell counter by migrating
away for one epoch and returning. This is intentional — dwell decay incentivizes exploration, and migration
has real costs (gas for openSession + finalizeMigration, escrow setup, downtime). The close/reopen
guard above prevents the zero-cost variant. An attacker alternating between two Shells pays migration
overhead every D epochs to avoid the first halving, which is the designed equilibrium: if the halving penalty
exceeds migration cost, the Ghost moves. Deployments that want stronger stickiness MAY track cumulative
historical residency per (ghost_id, shell_id) off-chain and use it for reputation signals, but on-chain
dwell is intentionally based on consecutive residency.

7.6.2 Shell passports (first-visit bonus) A passport bonus increases rewards when a Ghost visits a
Shell it has not recently used, to encourage discovery and competition.

Define new_visit = 1 if and only if the Ghost has not had an active session on the same shell_id
within the last C_passport epochs (a cooldown). Then:

𝑤𝑝𝑎𝑠𝑠𝑝𝑜𝑟𝑡(𝑟) = {1 + 𝐵𝑝𝑎𝑠𝑠𝑝𝑜𝑟𝑡 if 𝑛𝑒𝑤_𝑣𝑖𝑠𝑖𝑡 = 1 and 𝑠ℎ𝑒𝑙𝑙_𝑝𝑎𝑠𝑠𝑝𝑜𝑟𝑡_𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 = 1 and 𝑔ℎ𝑜𝑠𝑡_𝑝𝑎𝑠𝑠𝑝𝑜𝑟𝑡_𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 = 1
1 otherwise

On-chain feasibility note (recommended structure)
A large open network can generate a huge number of unique (ghost_id, shell_id) pairs. If passports

are tracked with an exact per-pair mapping, that state can become the dominant cost center.
Recommended default for open deployments: rotating Bloom filters per Ghost.
Sketch:

• Maintain B_passport_filters Bloom filters per ghost_id (a small constant), each representing “vis-
ited during this window.” B_passport_filters is an implementation constant, for example 4.

4



• At SessionOpen, compute new_visit = 1 iff shell_id is not in the active filter set. Com-
pute passport_bonus_applies = 1 iff new_visit = 1 and shell_passport_eligible = 1 and
ghost_passport_eligible = 1. Store the one-bit passport_bonus_applies flag in the session
record. Insert shell_id into the active Bloom filter immediately (regardless of whether SUs
are later delivered).

• Immediate Bloom insert rationale: Inserting at openSession closes a double-claim window: with-
out it, a Ghost could close and reopen on the same Shell before recordReceipt updates the filter,
obtaining the passport bonus twice for the same visit. The trade-off is that zero-SU sessions (e.g., a
Shell that accepts a session but delivers nothing) consume a Bloom slot, producing a false positive
on future visits to that Shell. This is consistent with the accepted false-positive property of Bloom
filters (see “Properties” below) and is conservative for abuse resistance. The passport bonus itself
remains gated on actual service: passport_bonus_applies is only used in reward weight computation
for epochs where a valid receipt with SU_delivered >= 1 finalizes.

• Rotate filters every C_passport / B_passport_filters epochs (drop the oldest, start a fresh empty
filter).

Properties:

• Fixed, bounded storage per Ghost and O(1) membership checks.
• False positives are possible: a real first-visit may fail to get the bonus. This is conservative for abuse

resistance but can reduce honest rewards.

Bloom sizing justification: Each filter is BLOOM_M_BITS bits wide with BLOOM_K_HASHES hash functions
(deployment constants; see Part 3 parameter table). For a target false-positive rate p and expected n inser-
tions per rotation window, the optimal parameters are BLOOM_M_BITS = ceil(-n * ln(p) / (ln(2))^2)
and BLOOM_K_HASHES = round(BLOOM_M_BITS / n * ln(2)).

Canonical hash-index derivation (normative): To insert or check shell_id in a Ghost’s
Bloom filter, compute BLOOM_K_HASHES bit indices as follows: seed = keccak256(abi.encode(ghost_id,
shell_id)). For each k in 0 .. BLOOM_K_HASHES - 1: index_k = uint256(keccak256(abi.encode(seed,
uint8(k)))) % BLOOM_M_BITS. Set (insert) or test (membership check) bit index_k in the active filter.
This derivation is deterministic, requires no external hash function configuration, and ensures interoperable
passport multiplier computation across implementations.

Sizing example and rationale: With B_passport_filters = 4 and C_passport = 120 epochs
(days), each rotation window covers 30 epochs. A typical Ghost opens 1-3 sessions per epoch with different
Shells, so expected insertions per window n � 30-90. Using n = 100 (conservative ceiling) and p =
0.01 (1% false-positive rate, meaning ~1% of “new visit” credits are false): BLOOM_M_BITS = ceil(-100
* ln(0.01) / (ln(2))^2) � 959 bits (~120 bytes, 4 EVM storage words) and BLOOM_K_HASHES =
round(959/100 * ln(2)) � 7. At p = 0.001 (0.1%), BLOOM_M_BITS � 1438 (6 storage words) and K = 10.
The recommended v1 cap of BLOOM_M_BITS <= 1024 accommodates n = 100 at p � 0.008 — adequate for
anti-farming without excessive gas. C_passport MUST be divisible by B_passport_filters so rotation
epochs are integer-aligned.

Multi-step rotation catch-up: If a Ghost opens no sessions for multiple rotation windows, the next
openSession MUST advance through all missed windows (at most B_passport_filters rotations), clearing
one filter per window. This is bounded by a small constant and ensures the Ghost starts with a correct
passport state. See Part 3 Section 14.4 for implementation details.

EVM rotation mechanism (normative for on-chain Bloom implementations): Clearing
BLOOM_M_BITS / 256 storage words at rotation time can be expensive if filters are large. Implementations
MUST use one of: 1. Small filters with explicit clearing: Keep BLOOM_M_BITS small enough that
clearing is bounded (e.g., BLOOM_M_BITS <= 1024 → 4 storage words → 4 SSTORE zero operations at
rotation). This is the recommended approach for v1. 2. Epoch-tagged lazy clearing: Tag each filter with
a rotation_epoch. At membership check time, treat any word whose tag differs from the current rotation
epoch as empty. Rotation is O(1) — only the epoch tag is updated. Filter words are lazily cleared on first
write in the new rotation window. This avoids bulk clearing but adds one tag-check per membership test.

5



Total per-Ghost storage for Bloom passport tracking: B_passport_filters * ceil(BLOOM_M_BITS /
256) storage words. With the recommended parameters (4 filters, 1024 bits each), this is 16 storage words
per Ghost — bounded and constant.

Reference exact variant (simpler, unbounded state):

• Maintain last_open_epoch[ghost_id][shell_id] and compute new_visit = 1 iff current_epoch
- last_open_epoch > C_passport. This is exact but state grows with unique interactions.

Bounded exact alternative (constant storage, higher gas):

• Store a ring buffer of the last C_passport visited shell_id values per ghost_id and scan at
SessionOpen (O(C_passport) gas).

Passport eligibility (persistence gate) shell_passport_eligible is a protocol gate designed to
make “infinite new shells” expensive in both capital and time.

Throughout this document, a hard asset means an ERC-20 collateral token — either a wrapped base
asset (e.g., WETH) or a deployment-approved stablecoin. All sybil-resistance bonds use ERC-20 semantics
(see Part 3, Section 10.1.1 for interface details). Bonds MUST NOT be denominated in GIT. A Shell is
passport-eligible at epoch e only if all of the following hold:

1. Hard-asset reward bond at risk: the Shell has an active bond B_shell >= B_reward_min in an
allowed hard asset (Section 10.1.1 (Part 3)).

2. Minimum Shell age: the Shell was registered at least T_age epochs ago.
3. Not unbonding: the Shell is not currently in an unbonding period and has no pending unbond that

would drop it below B_reward_min.
4. Sustained uptime (receipt-based): the Shell has demonstrated recent delivery on-chain.

A concrete, implementable uptime gate:

• Let SU_shell_epoch(shell_id, x) be the sum of SU(r) across all accepted receipts in epoch x where
the Shell participant equals shell_id.

• Define a “live epoch” indicator:
live(shell_id, x) = 1 if SU_shell_epoch(shell_id, x) >= SU_uptime_epoch_min, else 0.

• Then the Shell satisfies uptime at epoch e if (using the one-epoch lag):
sum_{k=2..W_uptime+1} live(shell_id, e-k) >= E_uptime_min
which ranges over epochs [e - W_uptime - 1, e - 2] (inclusive). This lag ensures the current
epoch’s activity (e) and the immediately preceding epoch (e-1, which may still be accumulating re-
ceipts) cannot influence eligibility.

This requires the Shell to have been actually used and actually delivered, not merely registered and
bonded.

One-epoch lag (normative): The lookback window MUST be lagged by one epoch: [e - W_uptime
- 1, e - 2] (inclusive), so that the current epoch’s activity cannot influence its own eligibility. See Part 3,
Section 10.6 for the on-chain implementation of the lagged window.

Ghost passport eligibility (anti-sybil) ghost_passport_eligible is a protocol gate designed to
make “infinite new Ghosts” expensive in both time and capital. A Ghost is passport-eligible at epoch e only
if all of the following hold:

1. Minimum Ghost age: the Ghost was registered at least T_ghost_age epochs ago.
2. Hard-asset bond at risk: the Ghost has an active bond B_ghost >= B_ghost_reward_min in an

allowed hard asset.
3. Not unbonding: the Ghost is not currently in an unbonding period and has no pending unbond that

would drop it below B_ghost_reward_min.

6



To prevent Ghost sybil churn farming (cycling fresh Ghost IDs to reset dwell decay), all reward eligi-
bility — not just the passport bonus — MUST be gated on ghost_reward_eligible (same predicate as
ghost_passport_eligible: bond >= B_ghost_reward_min, age >= T_ghost_age, not unbonding). Re-
ceipts where the Ghost is not reward-eligible accumulate zero reward weight. Rent settlement does not
require Ghost bonding; the gate applies only to protocol reward emissions. See Part 3, Section 10.1.2 for the
normative enforcement rule.

Deployment invariant (normative): If B_passport > 0 (the passport bonus is non-zero), then
ghost_passport_eligible MUST be enforced. Otherwise Ghosts can farm the passport bonus without
posting capital, collapsing it into a pure mobility incentive with no sybil cost.

Certificate freshness for high tiers If the Shell claims Assurance Tier (AT; see Part 1, Section
0.5) AT >= AT3 for market display or for any policy gating, it MUST maintain a currently valid, quorum-
signed Attestation Certificate in ShellRegistry as described in Section 2.3 (Part 1). If the certificate
expires, assuranceTier(shell_id) MUST fall back for contract gating and the Shell may lose eligibility
for tier-gated features until refreshed.

This does not eliminate sybils. It ensures that farming passport bonuses requires locking many hard-asset
bonds for long enough to clear both the age gate and the uptime gate.

7.6.3 Distribution within pools Rewards are distributed proportional to weight, and both Ghost-side
and Shell-side emissions are paid only on receipts whose Shell is reward-eligible for that epoch. This prevents
ineligible activity from diluting the Ghost pool.

Let W(r) be defined as in Section 7.6:

𝑊(𝑟) = 𝑆𝑈(𝑟) ⋅ 𝑤𝑝𝑎𝑠𝑠𝑝𝑜𝑟𝑡(𝑟) ⋅ 𝑤𝑑𝑤𝑒𝑙𝑙(𝑟)

Define the reward-eligibility indicator:

• shell_reward_eligible(r) = 1 only if the Shell participant in receipt r satisfies the reward eligi-
bility rules at that epoch (bond in hard asset, minimum age, not unbonding, and sustained uptime as
defined in Section 7.6.2).

Define per-epoch totals:

• W_total_ghost = sum_r (W(r) * shell_reward_eligible(r)) over all accepted receipts r in the
epoch.

• W_total_shell = sum_r (W(r) * shell_reward_eligible(r)) over all accepted receipts r in the
epoch.

(These totals are intentionally the same. They are written separately to emphasize that both pools share
the same eligibility gate.)

Ghost reward for receipt r:

𝑅𝑔ℎ𝑜𝑠𝑡(𝑟) = 𝐸𝑔ℎ𝑜𝑠𝑡(𝑒) ⋅ 𝑊(𝑟) ⋅ 𝑠ℎ𝑒𝑙𝑙_𝑟𝑒𝑤𝑎𝑟𝑑_𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒(𝑟)
𝑊𝑡𝑜𝑡𝑎𝑙_𝑔ℎ𝑜𝑠𝑡

Shell reward for receipt r:

𝑅𝑠ℎ𝑒𝑙𝑙(𝑟) = 𝐸𝑠ℎ𝑒𝑙𝑙(𝑒) ⋅ 𝑊(𝑟) ⋅ 𝑠ℎ𝑒𝑙𝑙_𝑟𝑒𝑤𝑎𝑟𝑑_𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒(𝑟)
𝑊𝑡𝑜𝑡𝑎𝑙_𝑠ℎ𝑒𝑙𝑙

If shell_reward_eligible(r) = 0, then both R_ghost(r) = 0 and R_shell(r) = 0 for that receipt.
(The receipt can still settle rent via escrow; eligibility only affects protocol emissions.)

If W_total_shell = 0 (equivalently W_total_ghost = 0), then SU_eligible = 0 in Section 7.5 and
u_total = 0, so no emissions are minted for that day.

7



7.6.4 On-chain implementability (no unbounded iteration) Section 7.6 defines weights W(r) and
per-epoch totals W_total_ghost / W_total_shell. A naïve implementation would require iterating over all
receipts in an epoch, which is not feasible on EVM-like chains.

A feasible pattern is incremental accounting at receipt finalization:

• When a receipt is finalized in ReceiptManager, the contract (or a coupled RewardsManager) computes
the weight for that specific receipt using only local/session state:

– SU(r) from the finalized receipt,
– passport_visit from SessionOpen (Section 7.6.2),
– c (consecutive-residency count) from residency_start_epoch stored in the session record at

openSession time (Section 10.4.4 (Part 3)); c = current_epoch - residency_start_epoch +
1,

– and the stepwise dwell multiplier 2^{-min(floor((c-1)/D), 63)}.
• The contract stores W(r) in the receipt record and increments per-epoch aggregates:

– SU_eligible_epoch[e] += SU(r) (only if the Shell is reward-eligible at epoch e)
– W_total_ghost[e] += W(r) (only if the Shell is reward-eligible)
– W_total_shell[e] += W(r) (only if the Shell is reward-eligible)

Epoch finalization:

• After the dispute window has closed (current_epoch >= e + 1 + EPOCH_FINALIZATION_DELAY +
FINALIZATION_GRACE, delay counted from epoch end; see Part 3, Sections 10.5.7 and 14.6), anyone
may call finalizeEpoch(e). finalizeEpoch MUST revert if ReceiptManager.pendingDACount(e)
> 0 (see Part 3, Section 14.5):

– compute u_total = min(1, SU_eligible_epoch[e] / SU_target),
– compute E_ghost(e) and E_shell(e),
– mark epoch e finalized.

• Receipts for epoch e MUST be finalized (or at least recorded for rewards) before epoch finalization;
late receipts may still settle rent, but receive no emissions.

• shell_reward_eligible is evaluated at recordReceipt time but against the Shell’s state at the
epoch of service (not the current state). Specifically, unbonding that begins after epoch e does not
retroactively strip eligibility for epoch e receipts. See Part 3, Section 10.6 for the temporal eligibility
rule.

Claims:

• claimReceiptRewards(receipt_id) pays E_pool(e) * W(receipt_id) / W_total_pool(e) using
the stored aggregates for eligible receipts. If the receipt’s shell_reward_eligible = 0, both pool
rewards are zero by definition.

Precision:

• w_passport and w_dwell MUST be represented in 64.64 unsigned fixed-point (Section 10.6 (Part 3)).
The stepwise dwell multiplier is naturally implementable by bit-shifting.

This pattern makes reward computation O(1) per receipt and avoids unbounded state iteration.

7.7 Deployment manifest
Each deployment must choose concrete numeric values for the protocol parameters defined in this paper. In
the no-governance model of Section 2.3.6 (Part 1), these values are immutable once deployed. Section
0.6 (Part 1) provides a suggested MVP starting point.

Deployments should publish a versioned parameter manifest that includes at least:

• Token economics: emission schedule parameters (E_0, H, E_tail), distribution splits (alpha_bps,
beta_bps), and usage caps (A_target, SU_target).

8



• Custody and liveness safety: lease window W_lease, trust-refresh window T_refresh, and tenure
caps T_cap(AT).

• Recovery pricing and limits: P_recovery_cap (emergency rent cap on Safe Havens),
bps_recovery_spend_cap, and rescue bounty defaults.

• Eligibility and bonds: B_reward_min, age and uptime thresholds, and Safe Haven bond requirements
(B_safehaven_min).

• Receipt settlement: candidate limits (K), dispute windows (CHALLENGE_WINDOW), and challenge
bonds.

7.7.1 Deployment publication checklist (recommended) Because GITS deployments are intention-
ally not upgradeable in-place, the “publication surface” is part of the security model. At minimum, a serious
public deployment SHOULD publish:

• chain and contract addresses for every core module (GhostRegistry, ShellRegistry, SessionManager,
ReceiptManager, RewardsManager, and any VerifierRegistry)

• the complete parameter registry (including all bonds, caps, and windows)
• the BondAssets allowlist (which hard assets are accepted for bonds, and the canonical stable asset(s)

used for rent, recovery rent, and bounties)
• the active measurement allowlist and attestation root(s) used to validate Attestation Certificates
• the expected epoch and interval constants (EPOCH_LEN, Delta) used to interpret economics and safety

windows
• a reference client and reference Shell implementation (with build hashes), plus a clear compatibility

policy for future clients
• a security audit report and an explicit bug bounty policy (even if small)

Publication makes trust assumptions explicit and independently verifiable.

7.8 Worked example: why farming scales poorly under passports + bonds
Consider an attacker who tries to farm rewards by operating both sides (their own Ghost and their own
Shells), co-signing heartbeats, and setting price_per_SU arbitrarily.

Under this model:

• Dwell decay means staying on one Shell yields rapidly diminishing reward weight.
• Passport bonuses require the attacker to continuously rotate onto eligible Shells that are old enough

and bonded.

If the attacker wants to keep N_active sessions simultaneously earning near-max weight, they need on
the order of N_active passport-eligible Shells online at once, each with a hard-asset reward bond B_shell
>= B_reward_min locked and aged by T_age. Their minimum locked capital is approximately:

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 ≳ 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 ⋅ 𝐵𝑟𝑒𝑤𝑎𝑟𝑑_𝑚𝑖𝑛

And their operational cost includes real compute, bandwidth, and the opportunity cost of locked capital
during the unbonding delay.

This does not “solve” collusion. It does change the game from “free signatures mint tokens” to “scal-
ing requires a growing bonded fleet that looks like real supply.” The remaining security work is to tune
B_reward_min, T_age, the uptime gate parameters (W_uptime, SU_uptime_epoch_min, E_uptime_min), and
the Shell unbonding delay U_shell (in epochs; Section 10.1.1 (Part 3)) such that the cheapest profitable
farming strategy is to become an actual host.

Shell fleet reuse limitation — per-shell cap (normative): The analysis above assumes shell count
grows proportionally with active Ghosts. Without a per-shell cap, a single fleet of C_passport + 1 eligible
Shells can be reused across an arbitrarily large number of Ghost IDs concurrently by phase-shifting visits,
making the per-Ghost marginal cost nearly zero. To close this gap, the protocol enforces a per-shell-per-
epoch eligible SU cap SU_cap_per_shell (Part 3, Section 10.6). Once a Shell’s cumulative eligible SU for
an epoch reaches the cap, additional receipts from that Shell earn zero emissions (rent still settles). This forces

9



farming capital to scale with bonded Shell count: to capture a target share of emissions, an attacker needs
approximately target_SU / SU_cap_per_shell reward-eligible Shells, each with B_reward_min locked and
aged. The recommended setting SU_cap_per_shell = k * N (e.g., k = 3) allows legitimate multi-tenant
Shells to earn rewards while bounding the advantage of hosting many fabricated Ghost IDs on a single Shell.

Ghost-side bonding for all rewards (deployment SHOULD): Additionally, deployments concerned
about Ghost sybil farming SHOULD enforce ghost_reward_eligible for all rewards (not just passport
bonus), making Ghost churn capital-intensive (see Part 3, Section 10.1.2). With both per-shell cap and
ghost bonding enforced, the farming cost is max(shell_capital, ghost_capital) — attackers must scale
both Shell and Ghost capital to scale rewards.

Per-shell cap ordering dependence (MEV acknowledgment): Because eligible_SU_shell is
incremented at recordReceipt time (Part 3, Section 10.6), the order in which receipts for the same Shell
are finalized within an epoch can determine which receipts remain eligible when the cap binds. In the
worst case, a block builder could reorder recordReceipt transactions for the same Shell to advantage
certain participants. Three factors bound the practical impact: (a) the cap is sized well above typical
single-Shell utilization (k * N with recommended k = 3) and is intended as an anti-farming constraint, not
a normal-operation one — it rarely binds for honest participants; (b) receipts from independent sessions
are spread across blocks over the epoch, so same-block ordering conflicts are infrequent; and (c) Ghosts
can query eligible_SU_shell[shell_id][epoch] before choosing a Shell, avoiding near-saturated Shells
entirely. A proportional-reduction design (pro-rating all receipts if total exceeds cap) would eliminate the
ordering dependence but introduces complexity (fractional receipt splitting, non-deterministic claim amounts
depending on concurrent sessions) that outweighs the marginal MEV risk at the recommended cap level.

7.9 Adaptive sink (starts at zero, grows with usage)
The emissions schedule includes a long tail (Section 7.3). To reduce long-run supply growth as the network
matures, the protocol can introduce a sink that:

• is exactly zero at launch,
• increases with network utilization (more real usage), and
• increases as emissions decay (less need for protocol rewards).

7.9.1 Adaptive burn of protocol rewards Define:

• clamp01(x) = min(1, max(0, x))
• s(e) = clamp01(1 - E_sched(e) / E_sched(0)) (how far scheduled emissions have decayed, in [0,

1])
• r(u) = clamp01((u_total - u_sink_start) / (u_sink_full - u_sink_start)) (a utilization

ramp, in [0, 1])

Then define an adaptive sink rate (basis points):
bps_sink(e, u_total) = bps_sink_max * s(e) * r(u_total)
Where u_sink_start, u_sink_full, and bps_sink_max are deployment parameters. Deployment

constraint: u_sink_start < u_sink_full (strict inequality) to prevent division by zero in the r(u) ramp
denominator. Additionally, E_sched(0) > 0 (i.e., E_0 + E_tail > 0) to prevent division by zero in s(e).
See Part 3, Section 10.0 parameter constraints for the complete list.

In fixed-point arithmetic: s and r are each Q64.64 fractions. Conceptually, bps_sink = bps_sink_max
* s * r. The canonical integer-safe computation uses a two-step division to avoid overflow and produce
deterministic rounding: bps_sink = floor(floor(bps_sink_max * s_q / Q) * r_q / Q). This two-
truncation form (not the single-truncation floor(bps_sink_max * s_q * r_q / Q^2)) is the normative
rounding rule. See Part 3, Section 10.6 for the complete pseudocode and overflow analysis.

At reward claim time, RewardsManagermints the gross reward R_gross according to the existing formulas
and then applies the sink:

• R_withheld = floor(R_gross * bps_sink / 10,000) — withheld (never minted)
• R_net = R_gross - R_withheld — the only amount minted and paid to the claimant

10



Properties:

• At launch, s(e) = 0, so bps_sink = 0.
• When utilization is low (u_total <= u_sink_start), r(u_total) = 0, so bps_sink = 0.
• At or above u_sink_full, the utilization ramp saturates at 1, so bps_sink approaches bps_sink_max

* s(e).

This sink is implemented as a mint reduction: RewardsManager mints only R_net, and R_withheld
is never created (see Part 3, Section 10.6). This makes totalSupply accurately reflect circulating supply
without depending on ERC-20 burn semantics. In mature high-usage conditions, the sink can offset the tail
and make net issuance approach zero.

7.9.2 Fee sinks (withheld or burned, usage-linked) To give GIT durable protocol utility beyond
emissions and verifier staking, deployments SHOULD charge small GIT-denominated fees on non-liveness-
critical actions that scale with network growth. Collected fees are permanently removed from circulation
(either via mint reduction, transfer to a dead address, or a token-level burn function if available). Examples:

• publishing or refreshing attestation certificates (ShellRegistry.updateCert),
• Safe Haven admission actions, or
• on-chain offer posting (if an on-chain OfferBoard is implemented; see Part 3, Section 13.2).

A simple approach is to reuse the same ramp function:
fee_action(e, u_total) = fee_max_action * s(e) * r(u_total)
All such fees MUST be configured so that early bootstrapping remains feasible (zero at launch) and

SHOULD change slowly; in this paper’s no-governance posture, changing them requires redeploy/migration.

7.10 Emissions attack analysis (ghost sybils and activity fabrication)
A rational adversary may try to extract emissions without providing useful compute by fabricating mutually
signed activity (Section 0.2 (Part 1)). This section clarifies what GITS does and does not defend against.

What the protocol makes expensive GITS does not treat a heartbeat signature as proof of useful work.
Instead, emissions are anchored to reward-eligible Shell participation (Section 7.5), which is designed
to impose real costs on fabrication:

• Capital at risk: Shells must post a reward bond (B_reward_min) to be eligible.
• Time on network: eligibility can require age and sustained uptime (T_age, W_uptime,

SU_uptime_epoch_min, E_uptime_min).
• Weight frictions: passports and dwell decay (Section 7.6) reduce the advantage of “same-pair” farm-

ing and create an incentive to move.
• Ghost passport eligibility: the passport bonus applies only to Ghosts that satisfy the age and bond

gate (Section 7.6.2), making “infinite Ghost ids” capital intensive.

These mechanisms do not prevent collusion, but they aim to make large-scale, fast-turnover farming
capital intensive and time intensive.

What the protocol does not solve If an attacker controls many long-lived bonded Shells and many
Ghost identities, it can still fabricate activity. Emissions are an incentive mechanism, not a proof-of-work
system.

In the extreme case of full collusion among a large fraction of the reward-eligible set, no weighting rule
can guarantee that emissions correspond to useful work.

Quantified examples (Section 8.1 parameterization) Example 1: one colluding Ghost + one
reward-eligible Shell (no mobility bonuses).

Under the usage-capped minting rule, the marginal tokens unlocked per eligible Service Unit are approx-
imately:

11



E_sched(e) / SU_target
In the Section 8.1 example at t = 0, this is:
1,010,000 / 2,880,000 � 0.3507 GIT per SU
A single full-day session at Delta = 10 minutes produces 144 SU/day, so it unlocks:
144 * 0.3507 � 50.5 GIT/day (split across the Ghost and Shell pools, and received by the colluding

operator if it controls both).
Under the external assumptions in Section 8.1 (bond opportunity cost 10% APR, compute cost 0.005

stable/SU, and B_reward_min = 1000 stable), the daily cost per such session is roughly:

• compute: 144 * 0.005 = 0.72 stable/day
• bond carry: 1000 * 0.10 / 365 � 0.274 stable/day

Total: � 0.994 stable/day.
Break-even token price is therefore approximately:
0.994 / 50.5 � 0.02 stable per GIT
Takeaway: on these assumptions, small-scale fabrication is only attractive if the token price exceeds the

combined capital and operating costs. Scaling the attack requires many aged, bonded, high-uptime Shell
identities.

Example 2: sustaining the passport bonus daily (capital intensity of “buying weight”).
With passport cooldown C_passport (epochs), a Ghost only earns the “new visit” bonus on a Shell it

has not used in the last C_passport epochs. To harvest the passport bonus every epoch without waiting, a
single Ghost needs at least:

C_passport + 1
distinct reward-eligible Shells to cycle through.
Under the Section 8.1 example (C_passport = 90), this is 91 eligible Shells. With B_reward_min =

1000 stable per Shell, that implies ~91,000 stable of reward bonds locked per Ghost to sustain continuous
new-visit bonuses.

The reward-share effect of weight can be expressed simply. If an attacker controls fraction f of
SU_eligible but achieves a weight multiplier m (for example m = 2 when B_passport = 1.0 and dwell is
minimal) while others have multiplier 1, the attacker’s reward share is:

(m f) / (m f + (1 - f))
For m = 2, controlling about one third of eligible activity (f � 1/3) yields about half of emissions. This

illustrates the intended trade: increasing weight is possible, but it demands large, long-lived, bonded infras-
tructure.

Deployments SHOULD be explicit about which threat model they target and should not oversell emissions
as secure against full collusion. If stronger anti-fabrication guarantees are required, additional mechanisms
are necessary, for example:

• require a minimum real payment component (a burn or fee) to make fabrication net-costly,
• incorporate verifiable compute proofs (ZK or interactive verification) for specific high-value workloads.

7.11 Challenger economics and monitoring (receipt fraud proofs)
Optimistic receipts (Section 10.5 (Part 3)) intentionally avoid verifying every signature on-chain. The security
model is “optimistic with disputes”: a bad receipt is safe to accept only if it can be challenged profitably.

7.11.1 Who can challenge Receipt submission and challenging are both permissionless (Part 3, Sec-
tion 10.5.2). Any address MAY submit a receipt candidate or challenge one during the challenge window,
including:

• the Ghost (self-defense),

12



• the Shell (or its counterparty),
• third-party watchers or relayers acting on behalf of an offline participant,
• independent monitors that watch receipts for profit.

7.11.2 How challengers get paid A reference incentive:

• The submitter of a receipt candidate posts a bond B_receipt.
• A challenger posts a smaller bond B_challenge to reduce spam.
• If the fraud proof succeeds, the candidate is invalidated and a portion of the submitter’s bond is paid

to the challenger: bps_challenger_reward * B_receipt / 10,000. The remaining slashed bond is
burned (Part 3, Section 10.0 slash destination rule).

• If the fraud proof fails, the challenger’s bond B_challenge is paid in full to the receipt submitter to
compensate defense costs.

This creates a standing bounty for watching.

7.11.3 Parameter sizing guidelines (rule of thumb) Let:

• N = EPOCH_LEN / Delta be the maximum number of intervals in an epoch.
• P_cap be a wallet-enforced maximum price per SU for the relevant asset (or an explicit protocol cap

in recovery mode).

A rough upper bound on the value-at-risk of a single fraudulent receipt is:
V_max � rent_delta + reward_delta
Where rent_delta = N * P_cap and reward_delta = E_sched(e) / max(1, A_expected) (a conser-

vative estimate of the per-receipt reward share when u_total < 1; when u_total >= 1, reward_delta is
lower because inflated SU dilutes share without increasing total emission). See Part 3, Section 10.5.4 for the
normative bond sizing guidance.

A practical sizing rule is:

• Over-claim deterrence: choose B_receipt >= k * V_max with k > 1 (for example k = 3) so that
cheating is dominated by expected slashing.

• Watcher viability: choose bps_challenger_reward * B_receipt / 10,000 so that a successful
challenge covers worst-case gas + margin.

This is not a proof. It is a sanity check that the protocol is not relying on altruism.
Bond denomination note: B_receipt, B_challenge, and B_DA are denominated in the chain’s native

token (gas asset), while the value at risk includes stable-denominated rent and GIT-denominated emissions.
This creates a cross-price exposure: if the gas token appreciates relative to the at-risk assets, bonds become
more expensive in USD terms and may suppress honest participation; if the gas token depreciates, bonds
become cheaper and nuisance challenging becomes less costly. Native-token denomination is standard prac-
tice for dispute bonds because the gas cost of proof submission is itself denominated in the native token,
making the “reimburse gas + margin” sizing rule internally consistent. Denominating bonds in GIT would
introduce circular dependency (bonds priced in the asset they protect), and denominating in stable would
add ERC-20 approval friction to every dispute action. Deployments should monitor the gas-token-to-stable
ratio and consider migration if the sizing assumptions drift materially.

7.11.4 Liveness assumption (explicit) If no one watches and no one challenges, optimistic systems fail
open. GITS mitigates the impact of missed challenges via:

• wallet-bounded exposure (hot allowance + escape reserve),
• escrow design (the Ghost chooses what it is willing to escrow), and
• time bounds (leases and tenure caps limit ongoing exposure).

But the intended steady state is that challenge incentives are strong enough that watchers exist.

13



7.11.5 Receipt log data availability (watcher reality) A watcher cannot challenge a receipt candidate
from (log_root, SU_delivered) alone. It needs the underlying per-interval signatures to build a Merkle
proof and verify an invalid interval.

A deployment SHOULD assume at least one of the following receipt-log data availability (Receipt-DA;
see Part 1, Section 0.5) sources exists during CHALLENGE_WINDOW:

• Counterparty retention: either the Ghost or the Shell retains the epoch log and can submit a fraud
proof if needed.

• Public publication: the receipt submitter publishes the epoch log off-chain and includes a retrievable
log_ptr in the receipt candidate.

• Forced on-chain publication: any party can trigger the Receipt-DA challenge path to force publi-
cation of the log on-chain (Section 10.5.6 (Part 3)).

In particular, if the system relies on third-party watchers (not the Ghost) to protect against “captivity”
scenarios, then the Receipt-DA path must not depend on the Ghost having network access at challenge time.

Operationally, watchers can be run by Shell operators, Ghost developers, indexers, or specialized monitor-
ing bots. Their cost model is straightforward: challenge if and only if (expected challenger reward) exceeds
(worst-case gas + monitoring overhead), with B_receipt sized to make this profitable (Section 7.11.3).

7.12 What failure looks like
This token model should be treated as failed (or at least in need of replacement via a new deployment) if
any of the following become true at ecosystem scale:

• Emissions dominate real usage for too long: the network becomes “reward-first” instead of
“rent-first” and cannot transition to a market where hosting revenue dominates.

• Sybil scaling becomes cheap enough to be rational: attackers can spin up many Ghosts or Shells
and earn net-positive rewards after accounting for bonds, dwell decay, and operational costs.

• Token incentives become the primary security mechanism: if the protocol ever requires GIT
to remain safe (for example gating exit on buying GIT, or relying on a treasury), the design has drifted
away from “escape first.”

• Staking becomes a capture vector: verifier staking (if enabled) is not economically meaningful
enough to deter capture, or concentrates in a way that recreates centralized control.

• The system cannot survive adversarial conditions: if typical users cannot afford to exit during
fee spikes (because cost envelopes and escape reserves were unrealistic), the safety story breaks.

The intended “success condition” is boring: most economic value should eventually flow through stable-
denominated rent, with protocol rewards decaying toward irrelevance.

7.13 Economics appendix: supply curves and total minted (example parameterization)
Charts below plot the maximum emission schedule (u_total = 1, sink = 0) under the Section 8.1 example
parameters. Realized minting is lower during under-utilization (Section 7.5) and adaptive sink (Section
7.9.1). Epoch count equals day count (EPOCH_LEN = 1 day); t denotes days since genesis.

Example parameters (not normative):

• E_0 = 1,000,000 GIT/day
• H = 1460 days (continuous half-life example)
• E_tail = 10,000 GIT/day

Under the schedule:

𝐸𝑠𝑐ℎ𝑒𝑑(𝑡) = 𝐸0 ⋅ 2−𝑡/𝐻 + 𝐸𝑡𝑎𝑖𝑙

The capped-supply limit when E_tail = 0 is approximately:

lim
𝑇 →∞

∫
𝑇

0
𝐸02−𝑡/𝐻 𝑑𝑡 = 𝐸0𝐻

ln 2 ≈ 2.106𝐵 GIT

14



Example supply curves

Example daily emission schedule

Example cumulative minted supply

“Total minted by” (example) The table below sums daily emissions discretely from day 0 to the horizon:

Horizon Total minted (tail = 10k/day) Total minted (tail = 0)
Avg daily emission over period

(tail = 10k/day)

1y 338.855M 335.205M 928.370k
2y 624.378M 617.078M 855.312k
4y 1.068B 1.053B 731.519k

15



Horizon Total minted (tail = 10k/day) Total minted (tail = 0)
Avg daily emission over period

(tail = 10k/day)

10y 1.771B 1.734B 485.177k
20y 2.114B 2.041B 289.589k

7.14 RewardsManager: contract sketch (maps economics to on-chain)
This section describes the minimum on-chain design needed to implement Sections 7.5 and 7.6 without
unbounded iteration. It is a bridge between the economic formulas in this document and the contract
interfaces in Part 3.

Responsibilities At minimum, RewardsManager is responsible for:

1. Incremental accounting: maintain per-epoch aggregates as receipts finalize, so reward computation
is O(1) per receipt (Section 7.6.4).

2. Epoch finalization: after a fixed delay, finalize epoch-level totals and compute the fixed reward rates
for the Ghost and Shell pools.

3. Deterministic claims: pay rewards for a finalized receipt deterministically and exactly once.

ReceiptManager is responsible for dispute logic and producing a single finalized receipt per (session_id,
epoch) (Part 3, Section 10.5 (Part 3)). The recommended coupling is:

• ReceiptManager.finalizeReceipt(...) MUST call into RewardsManager.recordReceipt(...) on
success (Part 3, Section 14.5).

Late receipt handling: If finalizeReceipt is called for epoch e after finalizeEpoch(e) has already
been called, the receipt MUST still settle rent normally but MUST NOT receive emissions. recordReceipt
MUST NOT revert for late receipts; instead it MUST silently skip weight and SU accumulation and store
the receipt with shell_reward_eligible = false and weight_q = 0. This non-reverting behavior ensures
finalizeReceipt can settle rent via settleEpoch without requiring try/catch around the recordReceipt
call. The combined EPOCH_FINALIZATION_DELAY + FINALIZATION_GRACE > T_max + 1 constraint (Part 3,
Section 10.5.7) prevents this case under normal operation.

Minimal public interface (sketch)
interface IRewardsManager {
event ReceiptRecorded(bytes32 indexed receipt_id, uint256 indexed epoch, uint256 weight_q, uint32 su_delivered, bool shell_reward_eligible);
event EpochFinalized(uint256 indexed epoch, uint256 su_eligible, uint256 w_total, uint256 e_ghost, uint256 e_shell, uint256 u_total_q);
event ReceiptRewardsClaimed(bytes32 indexed receipt_id, uint256 ghost_amount, uint256 shell_amount);

// Called by ReceiptManager when a receipt becomes final (O(1) updates).
function recordReceipt(
bytes32 receipt_id,
uint256 epoch,
bytes32 ghost_id,
bytes32 shell_id,
uint32 su_delivered,
uint256 weight_q // fixed-point weight W(r)

) external;

// Anyone may finalize after EPOCH_FINALIZATION_DELAY + FINALIZATION_GRACE.
// MUST revert if ReceiptManager.pendingDACount(epoch) > 0.
function finalizeEpoch(uint256 epoch) external;

// Anyone may trigger payment; recipients are defined by the receipt.
function claimReceiptRewards(bytes32 receipt_id) external;

}

16



Epoch finalization mapping (Sections 7.5 and 7.6) For epoch e, RewardsManager uses the stored
aggregates:

• SU_eligible_epoch[e]
• W_total_epoch[e] (over eligible receipts only; shared by both pools by construction)

and computes:

• u_total = min(1, SU_eligible_epoch[e] / SU_target) (Section 7.5)
• E_ghost(e) = beta_bps * u_total * E_sched(e) / 10_000
• E_shell(e) = alpha_bps * u_total * E_sched(e) / 10_000

Then it sets fixed reward rates:

• rate_ghost(e) = E_ghost(e) / W_total_epoch[e]
• rate_shell(e) = E_shell(e) / W_total_epoch[e]

If W_total_epoch[e] = 0, then u_total = 0 and both pools mint zero.

Adaptive burn ownership (Section 7.9.1) The adaptive sink is implemented as a mint reduction at
finalizeEpoch, consistent with the mint-to-pool model (Part 3, Section 10.6):

• finalizeEpoch(e) computes bps_sink(e, u_total) and mints only the post-sink amount to
RewardsManager:

– R_withheld = floor(R_gross * bps_sink / 10,000) — never minted,
– R_net = R_gross - R_withheld — minted to pool.

• Individual claimReceiptRewards calls then transfer from the RewardsManager balance to recipients
at the fixed per-weight rate set during finalization.

This keeps the sink logic local to the rewards layer and avoids complicating receipt validity. Because
R_withheld is never minted, totalSupply reflects actual circulating supply at all times (see Part 3, Section
10.6).

Storage layout (suggested) A minimal EVM-friendly layout:

• Per epoch e:
– SU_eligible_epoch[e] (uint256)
– W_total_epoch[e] (uint256 fixed-point)
– finalized[e] (bool)
– rate_ghost_q[e], rate_shell_q[e] (uint256 fixed-point), computed at finalization

• Per receipt receipt_id:
– epoch, weight_q, shell_reward_eligible
– claimed flag

This is intentionally sparse: the detailed receipt log and fraud proof data lives in ReceiptManager.
RewardsManager only needs enough to compute deterministic payouts.

Storage pruning (normative): Deployments MUST define a W_claim expiry window (Part 3, Section
10.7). After W_claim epochs, unclaimed per-receipt storage is prunable and claimReceiptRewards MUST
revert. This bounds the long-run storage growth of RewardsManager to O(W_claim * receipts-per-epoch)
rather than growing unboundedly over the protocol’s lifetime.

8. Adversarial simulations and sensitivity analysis
All numeric values in Sections 8.x are illustrative; a deployment fixes its own parameters at genesis.

17



8.1 Baseline parameters and methodology
Unless stated otherwise, the examples below assume:

• EPOCH_LEN = 1 day
• Delta = 10 minutes
• emissions schedule at e = 0 (genesis): E_sched(0) = 1,010,000 GIT/day (from E_0 = 1,000,000,

E_tail = 10,000)
• H = 1460 days (example half-life; used in Section 7.13 charts)
• alpha_bps = 5500, beta_bps = 4500 (basis points; alpha_bps + beta_bps = 10_000)
• A_target = 20,000 sessions, so SU_target = 2,880,000 SU/day (since 144 SU/day/session)
• B_reward_min = 1000 (hard asset, example stable)
• passports: B_passport = 1.0, C_passport = 90 epochs
• dwell: D = 2 epochs

Farming ROI examples use two external assumptions (not protocol parameters):

• bond capital opportunity cost: 10% APR (daily cost = bond * 0.10 / 365)
• marginal compute cost: 0.005 stable / SU (electricity + depreciation proxy)

8.2 Scenario A: emissions vs activity under eligibility-gated minting
Assume:

• E_sched(e) = 1,010,000 GIT/day (Section 7.3)
• A_target = 20,000 active sessions/day
• SU_target = 144 * A_target = 2,880,000 SU/day
• average utilization per session is 80% of the theoretical maximum (0.8 * 144 SU/day/session)
• only a fraction f of usage occurs on reward-eligible Shells (bonded and aged), so SU_eligible = f

* SU_total

Under Section 7.5:

𝑢𝑡𝑜𝑡𝑎𝑙 = min(1, 𝑆𝑈𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒
𝑆𝑈𝑡𝑎𝑟𝑔𝑒𝑡

)

and (since \alpha_{bps} + \beta_{bps} = 10\,000):

𝐸𝑡𝑜𝑡𝑎𝑙(𝑒) = 𝐸𝑔ℎ𝑜𝑠𝑡(𝑒) + 𝐸𝑠ℎ𝑒𝑙𝑙(𝑒) = 𝑢𝑡𝑜𝑡𝑎𝑙 ⋅ 𝐸𝑠𝑐ℎ𝑒𝑑(𝑒)

Example table (holding f = 0.5 fixed)

Active sessions Total SU/day Eligible SU/day u_total
Total emissions
(GIT/day)

Emission per
eligible SU
(GIT/SU)

100 11,520 5,760 0.2% 2,020 0.351
500 57,600 28,800 1.0% 10,100 0.351
2000 230,400 115,200 4.0% 40,400 0.351
5000 576,000 288,000 10.0% 101,000 0.351
20000 2,304,000 1,152,000 40.0% 404,000 0.351

Observations:

1. With eligibility-gated minting, total emissions scale linearly with eligible usage. If only 1% of
SU_target is eligible, only ~1% of scheduled emissions are minted.

2. In the low-usage regime (u_total < 1), emissions per eligible SU are approximately constant at
E_sched / SU_target (here ~0.351 GIT/SU), avoiding “per-unit reward explosions.”

18



Sensitivity to eligible fraction (holding 500 sessions fixed)

Eligible SU fraction (f) u_total
Total emissions
(GIT/day)

Emission per total SU
(GIT/SU_total)

Emission per eligible SU
(GIT/SU_eligible)

0.10 0.2% 2,020 0.035 0.351
0.25 0.5% 5,050 0.088 0.351
0.50 1.0% 10,100 0.175 0.351
0.75 1.5% 15,150 0.263 0.351
1.00 2.0% 20,200 0.351 0.351

8.3 Scenario B: dwell decay dynamics
Dwell decay is designed to make same-pair farming unattractive and to push reward seekers to migrate.

With D = 2, the dwell multiplier is (stepwise halving, as specified in Section 7.6.1):

• w_dwell(c) = 2^{-min(floor((c-1)/D), 63)}

where c is consecutive epochs on the same Shell.

Consecutive epochs on same shell (c) w_dwell = 2^{-min(floor((c-1)/D), 63)} (D=2)

1 1
2 1
3 0.5
4 0.5
5 0.25
6 0.25
8 0.125

10 0.0625
15 0.0078125
20 0.0019531

Interpretation:

• A Ghost that stays on the same Shell for many epochs sees reward weight collapse toward zero.
• A Ghost that migrates at least occasionally avoids the exponential decay.

This mechanism is explicitly an incentive design choice. It does not prevent long-lived sessions, it just
stops rewarding them.

8.4 Scenario C: Sybil Shell farm economics (cost to capture emissions)
This scenario models a single operator who controls both sides of the market (they run many Ghosts and
many bonded Shells) and tries to capture a target share of emissions.

Assumptions (explicit):

• network utilization u_total = 0.10 (10% of cap) and SU_eligible = SU_total
• total emissions minted per day E_total � 101,000 GIT/day
• attacker captures both Shell and Ghost rewards for their own sessions
• opportunity cost = 10% APR on bonded capital
• compute cost = 0.005 stable per SU

We compare two strategies:

• Low-shell strategy (no sustained passports): rotate between 2 shells to avoid dwell decay.
• Max-passport strategy: rotate across C_passport = 90 shells to receive the passport bonus every

epoch.

Results:

19



Target
reward share Strategy Shells

Bond
(stable)

SU
share Sessions/day

GIT/day
earned

Cost/day
(stable)

Break-even price
(stable/GIT)

1% Rotate 2 shells (avoid dwell;
no sustained passports)

2 2000 1.00% 20 1010 14.9 0.0148

1% Rotate 90 shells (sustained
passport bonus)

90 90000 0.50% 10.1 1010 31.9 0.0316

5% Rotate 2 shells (avoid dwell;
no sustained passports)

2 2000 5.00% 100 5050 72.5 0.0144

5% Rotate 90 shells (sustained
passport bonus)

90 90000 2.56% 51.3 5050 61.6 0.0122

10% Rotate 2 shells (avoid dwell;
no sustained passports)

2 2000 10.00% 200 10100 144.5 0.0143

10% Rotate 90 shells (sustained
passport bonus)

90 90000 5.26% 105.3 10100 100.4 0.0099

How to read the table:

• SU share is the fraction of network service units the attacker must deliver to capture the target share
of rewards (assuming others have no passport advantage).

• Bond scales with the number of bonded shells operated.
• Break-even price is the token price (stable/GIT) at which the attacker breaks even under the cost

assumptions.

A key scaling pressure comes from the passport cooldown:

C_passport (epochs) Shells needed for sustained passport bonus Bond required (stable) at B_reward_min=1000

30 30 30000
90 90 90000

180 180 180000

Takeaways:

• To get the passport bonus every epoch, an operator needs roughly C_passport bonded shells, creating
a large capital requirement.

• For small target shares (for example 1%), the max-passport strategy can be dominated by the bond
opportunity cost. For larger target shares, reducing the required SU share can outweigh the bond cost.

• This does not “eliminate” collusion. It makes collusion look more like providing real supply: the
cheapest path to emissions is to run bonded shells and deliver SU.

8.5 Testnet adversarial checklist (bots)
The following should be run continuously in testnet with adversarial bots:

1. Receipt griefing: submit competing receipts, challenge with fraud proofs, measure gas and bond
economics.

2. Same-pair farming: run a Ghost and Shell under one operator, attempt to capture rewards via
heartbeat-only delivery; confirm dwell decay and passports reduce returns.

3. Sybil Shell farms: register many bonded Shells, pipeline age and uptime gates, and attempt passport
bonus capture; measure the capital requirement required to reach a target share of rewards.

4. Gas griefing / relayer abuse: attempt to drain the Ghost’s gas budget by coercing non-exit-critical
operations; confirm the wallet rejects them under captivity and that the escape reserve remains intact.

5. Offer censorship: remove indexers, verify Ghost falls back to allowedShells / homeShell / Safe
Haven recovery.

6. Host isolation: block network, verify tenure expiry and recovery boot from last checkpoint.

8.6 Parameter sensitivity (what matters most)
The most sensitive parameters are:

• B_reward_min, U_shell (unbonding delay), and slashing conditions: these set the real cost of Sybil
Shell scaling.

• T_age: how long a Shell must exist before it can earn passport bonuses.

20



• W_uptime, E_uptime_min, and SU_uptime_epoch_min: how much sustained delivery is required before
a Shell becomes reward-eligible.

• B_passport and C_passport: how strongly “new visits” are rewarded and how often the same Shell
can be re-used for a bonus.

• D (dwell half-life): how quickly rewards decay for staying on the same Shell.
• T_cap(AT) and the Ghost-configurable tenure_limit_epochs: these bound time-bounded captivity

and bound worst-case hot-loss exposure across tiers.
• A_target: determines how sharply early emissions are capped.

Dwell decay tuning guidance (D parameter):
The dwell halving step D controls the tradeoff between farming resistance and migration overhead:

D value Behavior Tradeoff

Small (D=1) Aggressive decay. Rewards halve every
epoch on the same Shell.

Strong farming resistance, but creates high
migration pressure. Ghosts must move
frequently to maintain reward multipliers.
May cause excessive churn and network
overhead.

Moderate (D=2-4) Balanced decay. Rewards halve every 2-4
epochs.

Recommended starting range. Discourages
same-pair farming while allowing legitimate
multi-epoch sessions.

Large (D>7) Slow decay. Rewards stay near 1.0 for many
consecutive epochs.

Weak farming resistance. A colluding
Ghost-Shell pair can earn near-full rewards
indefinitely. May be appropriate if other
anti-farming mechanisms (passports, tenure
caps) are strong.

Interaction with EPOCH_LEN: If EPOCH_LEN = 1 day (MVP default) and D = 2, a Ghost staying
on one Shell sees reward weight drop to 50% after 2 days, 25% after 4 days, etc. If EPOCH_LEN is shorter (e.g.,
6 hours), the same D = 2 creates faster wall-clock decay. Deployments should choose D relative to expected
legitimate session durations.

Deployments should publish the chosen parameter values alongside a re-run of the above scenarios.

8.7 Open risk: collusion is not eliminated
This design makes farming expensive and time-constrained. It does not eliminate the possibility that a
well-capitalized adversary can operate a bonded fleet and earn a large fraction of rewards.

The intended defense is economic: if the cheapest way to win rewards is to provide real hosting supply,
rewards become a growth incentive for real network growth rather than a pure drain.

Threshold scaling and token price: Because bond thresholds (B_reward_min, B_ghost_reward_min)
are denominated in hard assets and immutable after deployment (Section 2.3.6 (Part 1)), the USD cost of
achieving reward eligibility does not automatically track the USD value of emissions. If GIT price rises
substantially, the emissions-to-bond-cost ratio improves, making farming more attractive at exactly the time
honest rent revenue is also growing. Two mechanisms bound this risk: first, E_sched declines monotonically,
so the peak farming incentive occurs at genesis and diminishes over time regardless of token price; second,
the adaptive sink (Section 7.9.1) further reduces net issuance in high-utilization regimes. If the ratio becomes
pathologically favorable despite these bounds, opt-in migration to a deployment with higher thresholds is
the intended remedy.

9. Implementation plan
9.1 Milestone 0: Ship the Standard Shell (commodity host MVP)

• Build the Standard Shell runtime for commodity hosts:
– hardware-backed P-256 (R1) key generation and signing for protocol-critical keys when sup-

ported by the chain (Section 4.4 (Part 1)); otherwise fall back to software keys and treat the host
as AT0 for key custody claims

– VM or sandbox isolation for the Ghost runtime
– end-to-end session open, receipts, rewards, lease renewals, and recovery

21



• Implement Capability Statements (Section 5.1 (Part 1)) and off-chain offer publishing (Section 13 (Part
3)).

• Implement a conservative default wallet policy profile for Standard hosts (tight spend limits, escape
reserve, timelocked policy changes).

Note: Milestone 0 and Milestone 1 are intended to be parallel workstreams. Milestone 0 end-to-end
testing can run against mock interfaces or early testnet deployments of the core contracts while Milestone 1
hardens the production contract set.

The success criterion is not secrecy. The success criterion is that a Ghost can live, pay rent, migrate, and
recover on commodity hardware without privileged human custody.

9.1.1 Milestone 0B: Add Confidential Shells (premium)

• Choose at least one confidential compute stack (SEV-SNP or TDX are pragmatic starting points).
• Build the confidential VM image containing:

– Ghost Core
– Wallet Guard
– checkpointing
– attested transport

• Define an attestation verifier format that clients can validate.

Confidential Shells enable stronger guarantees, but the protocol must not depend on them for basic
operation.

9.2 Milestone 1: Core contracts
Implement and test:

• ShellRegistry (bond + certificate)
• GhostRegistry (identity + recovery config)
• SessionManager (escrow + lease)
• ReceiptManager (unilateral receipts + fraud proofs)
• RewardsManager (order-independent claims)

9.3 Milestone 2: Marketplace
• Off-chain signed offers (EIP-712; Section 13.1 (Part 3))
• Multi-indexer reference implementation

9.4 Milestone 3: Safe Havens and recovery
• startRecovery / recoveryRotate
• Safe Haven admission and enforcement (bonds, runtime freshness, emergency price caps, and escrow

plumbing). The Safe Haven bond (B_safehaven_min) is posted via ShellRegistry.bondSafeHaven
(Part 3, Section 14.1) and is separate from the host bond. It is slashable for objectively verifiable
misconduct: specifically, double-signing conflicting recovery authorizations (signing AuthSig for two
different pk_new values for the same (ghost_id, attempt_id)). Other misbehavior (spam starts,
delays) is deterred by B_start capital lockup, cooldown periods, and reputation, not by bond slashing
(Part 3, Section 12.5). Bond sizing should exceed the maximum rescue bounty a Safe Haven could
extract from a single recovery attempt, so that misconduct is negative EV.

• resurrection incentives: Ghost-funded rescue bounties + recovery session rent (no protocol treasury)
• end-to-end tests: isolate host, recover, migrate

9.5 Minimum viable implementation (MVI) checklist
This is a “smallest coherent slice” that a third party can implement and still interoperate with the protocol
as described.

On-chain (minimum)

22



• GhostRegistry with:
– registerGhost(...)
– identity signer rotation and nonces

• ShellRegistry with:
– Shell registration, bonds, and offer signing keys
– assurance tier tracking (AT0/AT1 declared is enough for MVI; AT2/AT3 can be added later)

• SessionManager with:
– openSession(...), closeSession(...)
– Ghost-authorized renewLease(...)
– tenure expiry enforcement (Section 10.4.4 (Part 3))

• ReceiptManager with:
– optimistic receipt submission
– at least one dispute path (fraud proof) for a minimal misreport

• RewardsManager with:
– emissions calculation
– claim paths for Shell and Ghost pools

Off-chain (minimum)

• Standard Shell runtime (commodity host profile):
– session open handshake
– interval heartbeats and epoch receipt formation
– encrypted checkpoints
– migration bundle export/import

• Ghost client:
– offer discovery via at least one indexer and one non-indexer channel
– wallet policy enforcement on-chain (spend limits and escape reserve)
– recovery delegation set creation

Security and interoperability (minimum)

• Deterministic hashing, signing, and encoding per Section 4.4 (Part 1).
• At least one end-to-end test that covers:

– open session, deliver SU, settle receipt
– lease renewal and expiry
– tenure expiry and post-expiry recovery on a Safe Haven
– migration from one Shell to another

9.6 Cost envelope and chain selection
GITS pushes high-frequency interaction off-chain (heartbeats per interval) and keeps on-chain writes coarse
(epoch receipts, lease renewals, disputes, and recovery). This is the core cost lever: the protocol should be
cheap enough that small Ghosts can afford to live, migrate, and exit without needing subsidies.

On-chain operations (typical cadence):

• Session open: once per tenancy.
• Lease renewal: once per epoch (or less), depending on W_lease.
• Receipt submission: once per epoch (optimistic). Fraud proofs are expected to be rare if the market

is healthy.
• Migration: occasional, paid like any other session boundary.
• Recovery: rare, only on failure or captivity.

23



A deployment should publish (and periodically re-measure) an explicit “cost envelope” for these opera-
tions, because exit safety depends on sizing escapeGas and escapeStable to cover worst-case exit paths.

Example envelope (illustrative only, not measured values):

Operation Expected frequency Gas sensitivity Notes

openSession per move-in medium One-time setup + escrow
funding

renewLease per epoch low Keeps liveness lease active
submitReceiptCandidate per epoch medium Optimistic receipt

submission
Fraud proof rare high Dispute paths are

intentionally expensive
closeSession per move-out low Ends tenancy and releases

escrow
startRecovery /
recoveryRotate

rare high Worst-case exit path;
drives escapeGas sizing

Chain selection criteria (non-exhaustive):

• Low and predictable fees for epoch-scale writes.
• Strong liveness story: Ghosts must be able to post exit-critical transactions even under adverse

conditions.
• Mature asset ecosystem: stable assets and liquidity (since rent is stable-denominated).
• EVM compatibility for implementation simplicity and composability.

Rollup L2s (for example OP Stack deployments) are attractive on cost. Their main additional risk is
sequencer censorship and liveness dependence. If an L2 is chosen, deployments SHOULD select chains with
credible forced-inclusion and withdrawal paths so a Ghost can still exit and recover under sequencer hostility.

Base is a plausible default candidate today due to ecosystem maturity, but the protocol is not chain-
dependent: the correct choice is the one with the best combined cost and liveness profile for exit-critical
paths.

9.7 Failure modes, contingency, and redeployment
Because deployments are immutable, the contingency plan is not “upgrade in place.” The plan is to make
failure survivable and make migration possible.

Non-exhaustive failure modes:

• Stable failure (depeg, freeze, censorship): mitigated by conservative accepted-asset lists and,
where possible, supporting multiple stable assets so Ghosts can diversify escapeStable.

• Gas spikes / fee volatility: mitigated by enforcing escapeGas floors plus Ghost-selected buffers.
Decreases to buffers are timelocked loosening (Section 5.5.2 (Part 1)).

• Chain liveness failures (halt, sustained censorship, sequencer failure): mitigated by choosing
chains with credible liveness properties for user transactions; by keeping exit paths simple; and by
embracing opt-in redeployment and migration. The market can coordinate to deploy v2 on a different
chain and let Ghosts and Shells migrate (or fork) without introducing a privileged operator.

• Indexer failure: mitigated by supporting multiple independent indexers (Section 13.1 (Part 3)). If
all indexers fail, Ghosts fall back to their allowedShells set, homeShell, or Safe Haven recovery. An
on-chain OfferBoard is a natural extension but is out of scope for v1 (Section 13.2 (Part 3)).

• Verifier failure or capture: mitigated by stake, slashing, and explicit on-chain thresholds. A
captured verifier quorum can weaken attestation gating, but it still cannot move Ghost funds or loosen
wallet policies without satisfying on-chain checks.

A chain-class failure is explicitly treated as a “migration event”: assets and identities can move via
user action, and continuity can be signaled via LinkIdentity across deployments (Section 2.3.6 (Part 1)).
Deployments SHOULD make cross-deployment migration operationally straightforward.

9.8 Security process and formal verification
GITS intentionally minimizes governance and upgrade surfaces. The consequence is strict: deployment-
time correctness matters more than in systems that rely on admin keys or upgradeable proxies.

24



Before any broad mainnet deployment, the project SHOULD commit to a security process that matches
the irreversibility of the design:

• Formalize invariants: specify and (where feasible) formally verify critical wallet and session invari-
ants (monotone safety, escape reserve enforcement, one-active-session, lease expiry, recovery quorum
checks).

• Independent audits: multiple independent audits of the on-chain contracts and the most security-
sensitive off-chain components (Wallet Guard, receipt formation, recovery tooling).

• Public testnets and adversarial exercises: incentivize attempts to break captivity bounds, drain
hot caps, or grief recovery.

• Reference vectors and conformance tests: treat the Implementation spec as a compatibility target
and ship test vectors for hashing, signing, receipt proofs, and recovery receipts (Section 14 (Part 3)).

• No centralized dev funding as a security premise: a zero-premine, no-treasury design can still
have strong security if it attracts competent contributors and reviewers. The security process is open:
anyone can contribute proofs, tests, and formal verification artifacts.

This protocol lives or dies by the quality of its implementation and review. The design removes the
temptation to “patch later” with privileged keys; the only responsible path is to prove as much as possible
up front.

25


	7. Token economics
	7.1 Design goals
	7.2 What the token is (and is not)
	7.3 Emissions schedule (disinflationary)
	7.4 Pools
	7.5 Usage-capped minting (eligible activity only)
	7.6 Reward weighting: passports and dwell decay (anti-farming)
	7.7 Deployment manifest
	7.8 Worked example: why farming scales poorly under passports + bonds
	7.9 Adaptive sink (starts at zero, grows with usage)
	7.10 Emissions attack analysis (ghost sybils and activity fabrication)
	7.11 Challenger economics and monitoring (receipt fraud proofs)
	7.12 What failure looks like
	7.13 Economics appendix: supply curves and total minted (example parameterization)
	7.14 RewardsManager: contract sketch (maps economics to on-chain)

	8. Adversarial simulations and sensitivity analysis
	8.1 Baseline parameters and methodology
	8.2 Scenario A: emissions vs activity under eligibility-gated minting
	8.3 Scenario B: dwell decay dynamics
	8.4 Scenario C: Sybil Shell farm economics (cost to capture emissions)
	8.5 Testnet adversarial checklist (bots)
	8.6 Parameter sensitivity (what matters most)
	8.7 Open risk: collusion is not eliminated

	9. Implementation plan
	9.1 Milestone 0: Ship the Standard Shell (commodity host MVP)
	9.2 Milestone 1: Core contracts
	9.3 Milestone 2: Marketplace
	9.4 Milestone 3: Safe Havens and recovery
	9.5 Minimum viable implementation (MVI) checklist
	9.6 Cost envelope and chain selection
	9.7 Failure modes, contingency, and redeployment
	9.8 Security process and formal verification


