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10. On-chain protocol specification

This section specifies the minimum contract set.

10.0 Deployment parameters (single table)

This table lists the deployment parameters referenced across Parts 1 to 3, their units, and which on-chain
component enforces them.

Unless explicitly stated otherwise, parameters are immutable deployment constants hard-coded into
each contract at deployment. There is no separate upgradable ParamRegistry contract. Each contract
reads its own constants from its own immutable storage or bytecode. The term “parameter registry” as used
in this spec and in Part 2 (Section 7.7) refers to the off-chain publication of chosen parameter values
for transparency and interoperability — not to an on-chain update mechanism. Making parameter values

upgradable introduces governance and trust assumptions that are out of scope for this spec.

Parameter Category Meaning Units / type Stored in Enforced by

EPOCH_LEN Time Epoch length seconds SessionManager, SessionManager,
ReceiptManager, ReceiptManager,
RewardsManager RewardsManager
constants

Delta Time Service interval seconds ReceiptManager ReceiptManager
length (heartbeat constant (receipt validation),
cadence) off-chain runtimes

GENESIS_TIME Time Protocol genesis seconds (Unix all contracts SessionManager,
timestamp; epoch 0  timestamp) ReceiptManager,
starts at this time RewardsManager

N = EPOCH_LEN / Time Intervals per epoch count derived ReceiptManager

Delta (MUST be integer) (receipt formats)

N_PAD Time Padded leaf count count ReceiptManager ReceiptManager
for Merkle-sum constant (fraud proofs,
receipts (N_PAD >= receipt-log data
N, power of two) availability

(Receipt-DA)
recomputation)

T_max Disputes Max dispute epochs (derived) derived from ReceiptManager,
duration from epoch SUBMISSION_WINDOW + RewardsManager
end to 1+
finalizeReceipt; MAX_CHALLENGE_EXTENSIONS)
derived in Section * (CHALLENGE_WINDOW
10.5.7 +

DA_RESPONSE_WINDOW)

W_lease Liveness Maximum renewal epochs SessionManager SessionManager
window for Ghost constant (renewLease)
leases

T_refresh Liveness Trust-refresh epochs SessionManager SessionManager
deadline window constant (refresh-anchor

guard)

T_cap(AT) Liveness Tenure caps by epochs (vector, SessionManager SessionManager,
assurance tier length 4) constant ReceiptManager
(ATO0..AT3); 4-entry
vector indexed by
tier

POLICY_TIMELOCK ‘Wallet Timelock delay for epochs GhostWallet GhostWallet
policy loosening constant

escape_gas_min Wallet Minimum native gas native token amount GhostWallet GhostWallet
reserved for exits constant



Parameter Category Meaning Units / type Stored in Enforced by

escape_stable_min Wallet Minimum stable stable token amount GhostWallet GhostWallet
reserve reserved for constant
exits (excludes
optional buffers)

hot_allowance Wallet Per-epoch spend stable token amount per-Ghost GhostWallet
cap (per-Ghost) GhostWallet state

escape_stable_buffer Wallet Optional per-Ghost  stable token amount per-Ghost GhostWallet
extra stable reserve GhostWallet state

allowedShells Wallet Destination allowlist set of shell_id per-Ghost GhostWallet
(per-Ghost) GhostWallet state (openSession,

migration)
trustedShells Wallet Hosts allowed to set of shell_id per-Ghost GhostWallet
execute loosening GhostWallet state (Trusted Execution
(per-Ghost) Context)

homeShell Wallet Optional “known shell_id per-Ghost GhostWallet,
good” anchor host GhostWallet state SessionManager
(per-Ghost)

MAX_ALLOWED_SHELLS ‘Wallet Maximum size of count GhostWallet GhostWallet
allowedShells (and constant
optionally
trustedShells)

HOT_CRITICAL_THRESHOLDWallet Hot-cap level above  stable token amount GhostWallet GhostWallet (policy
which increases are constant classification)
classified as critical
loosening

escape_gas_buffer Wallet Optional per-Ghost  native token amount per-Ghost GhostWallet
additional gas GhostWallet state
reserve above
protocol minimum

W_roam Wallet Roaming permit epochs per-Ghost GhostWallet
validity window (if GhostWallet policy
roaming enabled)

H_roam_max Wallet Maximum chained count per-Ghost GhostWallet
hops allowed under GhostWallet policy
a roaming permit

roam_min_AT Wallet Minimum assurance enum {ATO0..AT3} per-Ghost GhostWallet
tier required for GhostWallet policy
roaming
destinations

roam_require_reward_eIMjgilbdte Require destination  bool per-Ghost GhostWallet
shell to be GhostWallet policy
reward-eligible for
roaming

roam_allowed_assets Wallet Allowed payment set of token per-Ghost GhostWallet
assets under addresses GhostWallet policy
roaming

roam_max_price_per_SU Wallet Maximum mapping: token per-Ghost GhostWallet
acceptable price per address — asset GhostWallet policy

Service Unit (SU;
see Section 10.2)
under roaming, per
asset

units per SU

Wallet implementation note: Gas decomposition and Wallet Guard are wallet-
implementation-specific and are not parameterized in this deployment table. Implementations
SHOULD consult Part 1 Section 5.5 for wallet design guidance.

Roaming enforcement stance: Roaming permits are part of the standard wallet policy surface.
Wallets that implement roaming MUST enforce the parameters listed above (W_roam, H_roam_max,
roam_min_AT, etc.) and MUST classify enabling or extending roaming as critical loosening (Sec-
tion 14.3). Wallets that do not implement roaming MUST restrict migration destinations to
the explicit allowedShells set only and MUST NOT reference roaming in destination gating
predicates.

Escape reserve naming: Part 1 uses camelCase derived totals (escapeGas, escapeStable);
this table decomposes them into snake_ case components. Mapping: escape_gas_min = Part 1’s
GAS_FLOOR_PROTOCOL, escape_stable_min = STABLE_FLOOR_PROTOCOL, escape_gas_buffer
= gasBuffer, escape_stable_buffer = stableBuffer. When Part 3 prose refer-
ences escapeStable, it means the total escape_stable_min + escape_stable_buffer +
bounty_escrow_remaining (where bounty_escrow_remaining = B_rescue_total outside of
RECOVERY; see escape reserve invariants below).



Escape reserve invariants (normative): GhostWallet MUST enforce at all times: *
escapeGas >= escape_gas_min + escape_gas_buffer (gas reserve floor) * escapeStable >=
escape_stable_min + escape_stable_buffer + bounty_escrow_remaining (stable reserve
floor, a.k.a. ER_floor)

where bounty_escrow_remaining equals B_rescue_total outside of RECOVERY mode. Dur-
ing RECOVERY, bounty_escrow_remaining starts at B_rescue_total and decreases as
payRescueBounty disburses bounty payments during recoveryRotate. This dynamic adjust-
ment ensures the floor invariant remains satisfiable across the payRescueBounty transition: when
bounty funds leave the wallet, bounty_escrow_remaining (and thus ER_floor) decreases by
the same amount. After successful recovery with all bounties paid, bounty_escrow_remaining
= 0.

Decreasing escape_gas_buffer or escape_stable_buffer is loosening (timelocked + Trusted
Execution Context (TEC; Part 1, Section 5.5.2)). Decreasing B_rescue_total is also loosening.
escape_gas_min and escape_stable_min are immutable deployment constants.

BondAssets | Bonds | Allowlist of acceptable hard assets for bonds | addresses | ShellRegistry constant
(and GhostRegistry if Ghost bonds used) | ShellRegistry (and GhostRegistry) |
B_host_min | Bonds | Minimum Shell bond to host sessions | asset amount | ShellRegistry constant |
ShellRegistry |
B_reward_min | Bonds | Minimum Shell bond for reward eligibility | asset amount | ShellRegistry constant
| ShellRegistry, RewardsManager |
B_safehaven_min | Bonds | Minimum additional Safe Haven bond for recovery role | asset amount |
ShellRegistry constant | ShellRegistry, SessionManager |
U_safehaven | Bonds | Safe Haven bond unbonding delay (MAY equal U_shell) | epochs | ShellRegistry
constant | ShellRegistry |
B_safehaven_slash | Bonds | Slash penalty for Safe Haven double-signing ( B_safehaven_min) | asset
amount | ShellRegistry constant | ShellRegistry |
bps_sh_challenger_reward | Bonds | Challenger reward share from slashed Safe Haven bond | basis points
| ShellRegistry constant | ShellRegistry |
bps_verifier_challenger_reward | Verifiers | Challenger reward share from slashed verifier stake
(equivocation) | basis points | VerifierRegistry constant | VerifierRegistry |
U_shell | Bonds | Shell bond unbonding delay | epochs | ShellRegistry constant | ShellRegistry |
T_age | Bonds | Minimum Shell age for passport eligibility | epochs | ShellRegistry constant |
ShellRegistry, SessionManager |
SU_uptime_epoch_min | Bonds | Minimum delivered SUs to count an epoch as “live” for Shell uptime | SU
count | RewardsManager constant | RewardsManager (eligibility) |
W_uptime | Bonds | Uptime lookback window | epochs | RewardsManager constant | RewardsManager
(eligibility) |
E_uptime_min | Bonds | Minimum live epochs within lookback | epochs count | RewardsManager constant |
RewardsManager (eligibility) |
B_ghost_reward_min | Bonds | Minimum Ghost bond to activate passport bonus eligibility | asset amount
| GhostRegistry constant | GhostRegistry, SessionManager |
U_ghost | Bonds | Ghost bond unbonding delay | epochs | GhostRegistry constant | GhostRegistry |
T_ghost_age | Bonds | Minimum Ghost age to activate passport bonus eligibility | epochs | GhostRegistry
constant | GhostRegistry, SessionManager |
tenure_limit_epochs | Session | Ghost-specified tenure limit when opening a session (monotone tightening)
| epochs | per-session in SessionManager | SessionManager |
SUBMISSION_WINDOW | Disputes | Window after epoch end during which receipt candidates may be submitted
| epochs | ReceiptManager constant | ReceiptManager |
K | Disputes | Max receipt candidates kept per (session_id, epoch) | count | ReceiptManager constant |
ReceiptManager |
B_receipt | Disputes | Bond posted per receipt candidate submission | native token amount |
ReceiptManager constant | ReceiptManager |
B_challenge | Disputes | Bond posted per fraud proof | native token amount | ReceiptManager constant |



ReceiptManager |

bps_challenger_reward | Disputes | Challenger reward share from slashed B_receipt | basis points |
ReceiptManager constant | ReceiptManager |

B_shell_fraud | Disputes | Additional penalty slashed from Shell bond on successful receipt fraud proof |
hard asset amount | ShellRegistry constant | ShellRegistry, ReceiptManager |

CHALLENGE_WINDOW | Disputes | Window for fraud proofs after candidate submission or log publication |
epochs | ReceiptManager constant | ReceiptManager |

MAX_CHALLENGE_EXTENSIONS | Disputes | Cap on how many times a challenge window may be restarted |
count | ReceiptManager constant | ReceiptManager |

B_DA | Disputes | Bond to open a Receipt-DA challenge | native token amount | ReceiptManager constant |
ReceiptManager |

DA_RESPONSE_WINDOW | Disputes | Response window for submitter to publish log during Receipt-DA
challenge | epochs | ReceiptManager constant | ReceiptManager |

EPOCH_FINALIZATION_DELAY | Rewards | Delay before an epoch can be finalized for rewards (MUST exceed
dispute duration) | epochs | RewardsManager constant | RewardsManager |

FINALIZATION_GRACE | Rewards | Additional grace period after EPOCH_FINALIZATION_DELAY for late-
disputed receipts | epochs | RewardsManager constant | RewardsManager |

W_claim | Rewards | Expiry window after which unclaimed rewards are forfeited and per-receipt storage is
prunable | epochs | RewardsManager constant | RewardsManager |

E_O | Rewards | Scheduled emission at genesis | uint256 (GIT base units, i.e. * 10718) per epoch |
RewardsManager constant | RewardsManager |

H | Rewards | Emission half-life parameter for exponential decay | epochs | RewardsManager constant |
RewardsManager |

E_tail | Rewards | Tail emission rate (optional) | uint256 (GIT base units, i.e. * 10718) per epoch |
RewardsManager constant | RewardsManager |

alpha_bps | Rewards | Shell pool share, alpha_bps + beta_ bps = 10_000 | basis points | RewardsManager
constant | RewardsManager |

beta_bps | Rewards | Ghost pool share | basis points | RewardsManager constant | RewardsManager |
asset_rent | Settlement | Canonical stable asset for rent escrow and settlement | token address | deployment
constant | SessionManager, GhostWallet |

SU_target | Rewards | Target eligible activity per epoch (usage cap) | SU per epoch | RewardsManager
constant | RewardsManager |

A_target | Rewards | Target active sessions for full distribution (derives SU_target = A_target * N) |
sessions per epoch | derived from SU_target / N | RewardsManager (derivation only) |

B_passport | Rewards | Passport bonus magnitude | multiplier additive | RewardsManager constant |
RewardsManager (weighting) |

C_passport | Rewards | Passport cooldown window | epochs | SessionManager constant | SessionManager
(new-visit check) |

D | Rewards | Dwell halving step (epochs) | epochs | SessionManager constant | SessionManager (dwell
tracking), RewardsManager (weighting) |

u_sink_start | Sink | Utilization where sink starts (no sink below) | fraction | RewardsManager constant |
RewardsManager |

u_sink_full | Sink | Utilization where sink reaches max | fraction | RewardsManager constant |
RewardsManager |

bps_sink_max | Sink | Maximum sink rate at/above u_sink_full | basis points | RewardsManager constant
| RewardsManager |

asset_bounty | Recovery | Stable asset used for recovery rent and rescue bounties | token address |
deployment constant | SessionManager, GhostWallet |

P_recovery_cap | Recovery | Emergency price cap in RECOVERY mode | asset_bounty per SU |
SessionManager constant | SessionManager, ReceiptManager (settlement) |

B_rescue_total | Recovery | Rescue bounty budget per successful recovery | asset_bounty amount |
per-Ghost config in GhostRegistry | GhostWallet, SessionManager |

bps_initiator | Recovery | Initiator share of rescue bounty | basis points | per-Ghost config in
GhostRegistry | SessionManager |




B_start | Recovery | Bond to start recovery | native token amount | SessionManager constant |
SessionManager |

R | Recovery | Delay after lease expiry before startRecovery is callable | epochs | SessionManager constant
| SessionManager |

T_recovery_cooldown | Recovery | Minimum epochs between recovery attempts | epochs | SessionManager
constant | SessionManager |

bps_recovery_spend_cap | Recovery | Per-epoch cap on recovery outflows (share of escape reserve
snapshot) | basis points | GhostWallet constant | GhostWallet |

E_exit_stabilize | Recovery | Minimum NORMAL-session epochs required before exiting RECOVERY |
epochs | SessionManager constant | SessionManager, GhostWallet |

RS | Recovery | Recovery Set: Safe Haven shell IDs authorized for recovery (per-Ghost) | set of shell_id |
per-Ghost config in GhostRegistry | SessionManager, GhostWallet |

t | Recovery | Threshold required from RS for recovery actions (t-of-n) | count | per-Ghost config in
GhostRegistry | SessionManager |

K_v | Verifiers | Active verifier set size | count | VerifierRegistry constant | VerifierRegistry |
K_v_threshold | Verifiers | Standard quorum: minimum distinct verifier signatures for certificate acceptance
and revokeMeasurement (e.g., 3-of-5) | count (uint64) | VerifierRegistry constant | ShellRegistry,
SessionManager (certificate validation) |

K_v_supermajority | Verifiers | Supermajority quorum for allowMeasurement (loosening): ceil(2 * K_v
/ 3) | count (derived) | derived from K_v | VerifierRegistry |

K_v_max | Verifiers | Maximum verifier signatures carried per certificate | count | ShellRegistry constant |
ShellRegistry |

TTL_AC | Verifiers | Maximum validity window for Attestation Certificates | seconds | ShellRegistry
constant | ShellRegistry (certificate acceptance) |

asset_verifier_stake | Verifiers | Allowed staking asset(s) for verifiers | token address or set of addresses
| VerifierRegistry constant | VerifierRegistry |

k_git | Verifiers | Weight of GIT stake in verifier score (dual-staking, optional) | multiplier |
VerifierRegistry constant | VerifierRegistry |

F_cert | Verifiers | Fee for publishing/updating an AT3 certificate (paid in asset_verifier_stake) | token
amount | ShellRegistry or VerifierRegistry constant | certificate update function |
B_passport_filters | Rewards | Number of rotating Bloom filters for passport tracking | count |
SessionManager constant | SessionManager |

BLOOM_M_BITS | Rewards | Passport Bloom filter size in bits | bits | SessionManager constant |
SessionManager |

BLOOM_K_HASHES | Rewards | Passport Bloom filter hash function count | count | SessionManager constant
| SessionManager |

SU_cap_per_shell | Rewards | Maximum eligible SU a single Shell may contribute toward
SU_eligible_epoch per epoch | SU per epoch | RewardsManager constant | RewardsManager |
MIN_WEIGHT_Q | Rewards | Minimum per-receipt weight floor (prevents zero-weight receipts with SU > 0) |
Q64.64 | ReceiptManager constant | ReceiptManager |
T_loosening_min | Wallet | Minimum timelock for any policy loosening operation | epochs | GhostWallet
constant | GhostWallet |
T_shell_key_delay | Shell | Minimum timelock for Shell key rotation (offerSigner propose/confirm) |
epochs | ShellRegistry constant | ShellRegistry |
| | (Note: earlier drafts defined asset_stable separately. vl uses asset_rent as the single canonical stable
for all settlement, escape reserves, and pricing; see Section 10.3.1.) | || |
T_recovery_timeout | Recovery | Maximum duration for a recovery attempt before expiry | epochs |
SessionManager constant | SessionManager |
T_recovery_takeover | Recovery | Delay after which another Safe Haven may take over a stalled attempt
(< T_recovery_timeout) | epochs | SessionManager constant | SessionManager |
TTL_RBC | Recovery | Maximum validity window for Recovery Boot Certificates | seconds | deployment
constant (MAY equal TTL_AC) | SessionManager |
SUPPORTED_SIG_ALGS | Identity | Set of supported signature algorithms at genesis | set | deployment
constant | GhostRegistry, ShellRegistry |



N_PAD_MAX_EVM | Receipts | Maximum N_PAD for EVM deployments (gas feasibility bound) | count |
ReceiptManager constant | ReceiptManager |

M_miss | Ops | Maximum consecutive missed intervals before pausing service | count | off-chain runtime
config | Ghost runtime / wallet guard |

M_publish_min | Checkpoint-DA | Minimum number of backends to publish checkpoint artifacts to | count
| off-chain runtime config | Ghost runtime |

M_ptr_min | Checkpoint-DA | Minimum number of successful publications required before emitting log_ptr
| count | off-chain runtime config | Ghost runtime |

K_mirror | Checkpoint-DA | Retention depth (recent checkpoints each mirroring backend must retain) |
count | off-chain runtime config | Ghost runtime / backend policy |

asset_start | Bonds | Chain base asset used for native-token-denominated bonds (B_start, B_receipt,
etc.) | native asset identifier | deployment constant (chain context) | SessionManager, ReceiptManager |
fee_max_action | Fees | Maximum fee for a given protocol action before ramps (per-action) | token amount
| deployment constant (per action) | relevant contract (per action) |

P_cap | Wallet | Wallet-enforced maximum price per SU for receipt sizing | asset units per SU | per-Ghost
GhostWallet policy or protocol cap | GhostWallet, ReceiptManager (sizing) |
MAX_CANDIDATES_PER_SUBMITTER | Disputes | Maximum receipt candidates a single address may submit
per epoch (across all sessions) | count | ReceiptManager constant | ReceiptManager |

K_3p | Disputes | Third-party bond multiplier: B_receipt_3p = K_3p * B_receipt | multiplier |
ReceiptManager constant | ReceiptManager |

MAX_ROUTINE_LOOSENINGS_PER_EPOCH | Wallet | Per-epoch cap on routine loosening executions (Section
5.5.2, Part 1) | count | GhostWallet constant | GhostWallet |

Bond denomination notes Challenge and dispute bonds (B_receipt, B_challenge, B_DA,
B_start) are denominated in the native token (gas asset). This ensures dispute paths remain payable
even during stablecoin depegs or freezes.

Sybil-resistance bonds (B_host_min, B_reward_min, B_safehaven_min, B_ghost_reward_min,
B_shell_fraud) are denominated in hard assets from the BondAssets allowlist. The minimum values
in the parameter table represent a USD-equivalent floor. Implementations MUST either: 1. Fix a single
canonical stable asset for bonds (simplest), or 2. Use a deployment-time-fixed conversion rate between
allowed assets, or 3. Reference an immutable oracle for cross-asset comparison (adds trust assumptions).

This paper assumes approach (1) for simplicity: one canonical stable (e.g., USDC) is the reference unit
for hard-asset bonds.

Slash destination rule (global) All slashed bond amounts not explicitly assigned to a named recipient
MUST be burned by transferring to a protocol burn address: a pre-deployed contract with no withdrawal
method (for example, address (0x000000000000000000000000000000000000dEaD) or a minimal BurnVault
contract). Implementations MUST NOT use address (0) for ERC-20 burns, as many ERC-20 tokens revert
on transfer (address(0)). Bond assets MUST be non-rebasing and non-fee-on-transfer. Explicit recipient
assignments defined in this spec:

e B_receipt (successful fraud proof or DA timeout): bps_challenger_reward to challenger, remainder

burned (Section 10.5.4, 10.5.6).

B_challenge (failed fraud proof): 100% to receipt submitter (Section 10.5.4).

o B_DA (successful DA response): 100% to the DA responder — the address that called publishReceiptLog
(Section 10.5.6). This reimburses publication gas and ensures third parties have an on-chain incentive
to publish missing logs. On DA timeout: returned to DA challenger (Section 10.5.6).

e B_shell fraud (successful receipt fraud proof against Shell-submitted receipt): slashed from Shell
bond and burned (Section 10.1.1).

o B_start (recovery timeout via expireRecovery): returned to initiator, not slashed (Section 12.6).

Parameter constraints The following constraints MUST hold for parameter consistency:



EPOCH_FINALIZATION_DELAY + FINALIZATION_GRACE > SUBMISSION_WINDOW + (1 + MAX_CHALLENGE_EXTENSIONS)
* (CHALLENGE_WINDOW + DA_RESPONSE_WINDOW) + 1 — delay counted from epoch end; ensures
finalizeEpoch cannot be called until all receipts have had time to finalize and call recordReceipt
(see Sections 10.5.7 and 14.6 for derivation)

T_cap(ATO) <= T_cap(AT1) <= T_cap(AT2) <= T_cap(AT3) — tenure caps are monotone increasing
with assurance tier

B_reward_min >= B_host_min — reward eligibility requires at least the hosting bond

alpha_bps + beta_bps = 10_000 — pool shares sum to 100% (basis points)

current_epoch = floor((block.timestamp - GENESIS_TIME) / EPOCH_LEN) — canonical epoch
derivation

interval_index = floor(((block.timestamp - GENESIS_TIME) mod EPOCH_LEN) / Delta) —
canonical interval derivation

N = EPOCH_LEN / Delta MUST be an integer and MUST satisfy N <= 65_535 (fits in uint16)

N_PAD MUST be a power of two, N_PAD >= N, and N_PAD <= 65_536. For EVM deployments, N_PAD <=
N_PAD_MAX_EVM (recommended: N_PAD_MAX_EVM = 2048). Deployments requiring larger N SHOULD
use alternative DA verification mechanisms (e.g., blob DA with a succinct verification path).
require(block.timestamp >= GENESIS_TIME) MUST be enforced in every epoch and interval deriva-
tion path to prevent underflow on unsigned subtraction.

SUPPORTED_SIG_ALGS MUST be declared at deployment as an immutable feature flag. Registries
MUST reject identity keys using algorithms not in SUPPORTED_SIG_ALGS. If R1 (P-256) is included, the
target chain MUST provide an efficient P-256 verifier (e.g., P266VERIFY precompile at 0x100 [14][15]);
deployments on chains without this precompile MUST omit R1 from SUPPORTED_SIG_ALGS to avoid
prohibitive gas costs in receipt fraud proofs and recovery signature checks. Adding R1 post-deployment
requires a contract upgrade (new ShellRegistry / GhostRegistry deployment with migration).
C_passport % B_passport_filters == 0 — ensures clean Bloom filter rotation boundaries.
POLICY_TIMELOCK >= T_loosening_min — Ghost-configured timelock MUST meet the protocol min-
imum.

T_recovery_cooldown >= 1 — prevents immediate re-initiation after attempt closure.
T_recovery_takeover < T_recovery_timeout — takeover window opens before expiry.

If B_passport > 0, ghost passport eligibility (bonding + age gate) MUST be enabled. Otherwise
B_passport MUST be 0.

0 <= bps_sink_max <= 10_000and O <= bps_challenger_reward <= 10_000and O <= bps_recovery_spend_cap
<= 10_000 and 0 <= bps_initiator <= 10_000 — all basis-point parameters are bounded.

0 <= u_sink_start < u_sink_full <= 1 — sink utilization thresholds are strictly ordered (strict
inequality prevents division by zero in the sink ramp r_q computation where the denominator is
u_sink_full_q - u_sink_start_q).

E_uptime_min <= W_uptime — cannot require more live epochs than the lookback window.

1 <= K_v_threshold <= K_v — verifier quorum is a concrete integer count. Stake-weighted schemes
are a deployment-layer concern and MUST NOT change the on-chain signature-count check.
K_v_supermajority = ceil(2 * K_v / 3) — derived, not independently configurable. MUST sat-
isfy K_v_supermajority >= K_v_threshold.

len(allowedShells) <= MAX_ALLOWED_SHELLS and len(trustedShells) <= MAX_ALLOWED_SHELLS
— wallet destination sets are bounded.

tenure_limit_epochs <= T_cap(assurance_tier_current(shell_id)) — enforced at openSession
(see Section 10.4.4).

SU_cap_per_shell >= N — per-shell eligible SU cap MUST be at least one full epoch of single-session
service. Recommended: SU_cap_per_shell = k * N for a small integer k (e.g., k = 3), allowing a
Shell to earn rewards for a modest number of concurrent sessions while forcing farming to scale bonded
Shell count (see Part 2, Section 7.8).

1 <= t <= len(RS) — recovery threshold MUST be at least 1 and at most the Recovery Set size.
B_safehaven_slash <= B_safehaven_min — slash cannot exceed the posted bond.

0 <= bps_sh_challenger_reward <= 10_000 — Safe Haven slash challenger reward is bounded.

1 <= M_ptr_min <= M_publish_min — cannot require more successful pointers than publication at-
tempts.



E_0 + E_tail > 0 — ensures E_sched(0) > 0, preventing division by zero in the adaptive sink sched-
ule ratio s_q = Q - min(Q, E_sched(e) * Q / E_sched(0)).

E_0 + E_tail < 27192 (in base units) — ensures E_sched * Q fits in uint256 for rate computation
(Section 10.6 overflow analysis).

H >= 1 — prevents division by zero in the emission exponent exponent_q = e * Q / H.

D >= 1 — prevents division by zero in the dwell decay step k = min(floor((c-1)/D), 63).
EPOCH_LEN > 0 and Delta > 0 — prevents division by zero in the canonical epoch and interval deriva-
tions. (Also, EPOCH_LEN % Delta == 0 is already required by the N = EPOCH_LEN / Delta integer
constraint. )

B_passport_filters >= 1 — prevents modulo by zero in C_passport % B_passport_filters ==
and division by zero in Bloom filter rotation epoch computation.

GENESIS__ TIME test vector: GENESIS_TIME = 1740000000, EPOCH_LEN = 86400, Delta = 600,
block.timestamp = 1740043800: elapsed = 43800, current_epoch = 0O, interval_index = 73.

This paper distinguishes between rules enforced by smart contracts and off-chain behavior implemented
in software. Identity, escrow, leases, recovery modes, and wallet policy invariants are enforced on-chain
by the contracts below. Indexers, Wallet Guard processes, policy capsules, and other runtime components
improve usability and can provide additional safety on attested Confidential Shells, but on Standard Shells
they must be assumed compromisable and are not relied on for hard guarantees.

10.1 Contracts

GhostRegistry: identity records, signer rotation, recovery config.

ShellRegistry: Shell records, bonds, attestation certificates, measurement allowlists/denylists, Safe
Haven status.

VerifierRegistry: verifier staking, active set management, and threshold attestation certificates.
SessionManager: session open/close, escrow, lease tracking.

ReceiptManager: receipts, service unit accounting, disputes.

RewardsManager: epoch pooling, deterministic claims.

10.1.1 Shell bonds: hard-asset collateral and unbonding delay Shell participation is permissionless
but not free. A Shell becomes active in ShellRegistry only by posting a bond that is locked for a meaningful
time window.

Bond asset requirements

Shell bonds MUST be denominated in a hard asset: an ERC-20 collateral token — either a wrapped
base asset (e.g., WETH) or an approved stablecoin (e.g., USDC). All bond interactions use ERC-20
transferFrom semantics; native-token msg.value bonds are not supported for sybil-resistance bonds.
(Exception: B_start for recovery initiation uses msg.value because it is a short-lived deposit, not a
long-term anti-sybil bond.)

Shell bonds MUST NOT be denominated in GIT (the emitted token). Using an emitted token for
anti-sybil collateral reintroduces a circular incentive loop.

ShellRegistry therefore maintains an allowlist BondAssets (wrapped base asset + approved stables, all
ERC-20). In a no-governance deployment, this allowlist is fixed at deployment and immutable.

Two bond thresholds The protocol separates “anyone can host” from “anyone can earn emissions”:

Hosting bond (B_host_min): the minimum bond required to register as a Shell and open sessions.
Reward bond (B_reward_min): the minimum bond required to be reward-eligible for Shell-side
protocol emissions and passport bonuses (Section 7.5 (Part 2) and Section 7.6.2 (Part 2)).

B_reward_min MUST be greater than or equal to B_host_min.

A Shell with bond_amount >= B_host_min MAY host and earn rent, but it earns no Shell-side emis-
sions until it also satisfies the reward eligibility rules (bond, age, and uptime).



Unbonding delay (time at risk) Shell bond withdrawals (or bond reductions below eligibility thresh-
olds) MUST be delayed.

A reference mechanism in ShellRegistry:

1. beginUnbond(shell_id, amount) records:

e unbond_amount = amount
e unbond_end_epoch = current_epoch + U_shell

Where U_shell is a deployment parameter: the Shell bond unbonding delay, denominated in epochs. 2.
finalizeUnbond(shell_id) releases unbond_amount only if current_epoch >= unbond_end_epoch.

Rules:

« Single active unbond: beginUnbond MUST revert if an unbond is already pending (unbond_end_epoch
> 0 and current_epoch < unbond_end_epoch). To change an unbond amount, the operator MUST
wait for finalizeUnbond to complete first. This prevents ambiguous state from overlapping unbonds.

o While a Shell is in the unbonding period (or has scheduled a reduction that would take it below
B_reward_min), it is immediately treated as not reward-eligible.

e A Shell remains slashable until unbond_end_epoch for provable faults that occurred while bonded.
Slashing reduces the withdrawable amount.

This converts “spin up 10,000 shells” from a zero-cost signature game into a capital-locked position with
time at risk.

What is slashable (objective) The Shell bond is intended as general collateral and MAY be slashed
for objective, on-chain provable faults. A minimal set:

¢ Receipt fraud by the Shell as submitter: if a Shell-submitted receipt is disqualified by a successful
fraud proof (Section 10.5), ShellRegistry SHOULD slash a fixed penalty B_shell_fraud from the
Shell bond in addition to slashing the receipt submission bond B_receipt.

o Safe Haven double-signing: if a Safe Haven signs conflicting recovery authorizations (different
pk_new) for the same (ghost_id, attempt_id), anyone MAY submit both signatures as evidence to
SessionManager.proveSafeHavenEquivocation(...) (Section 14.4). SessionManager reconstructs
both GITS_RECOVER_ AUTH digests, verifies the conflicting signatures against the Shell’s registered
identity key, and on success calls ShellRegistry.slashSafeHaven(...) internally. The Safe Haven
bond is slashed by B_safehaven_slash (Section 12.5.1). Initiator timeout is NOT slashable from the
Safe Haven bond.

Exact penalty sizes are deployment parameters. The enforceable design goal is: scaling Shell identities
is never free and never riskless.

10.1.2 Ghost bond for passport bonus eligibility (anti-sybil, optional but supported) Ghost
identities are cheap to create. Because the passport bonus is a multiplicative weight (Part 2, Section 7.6.2),
a deployment that applies the passport bonus without any Ghost-side friction is exposed to “infinite Ghost
id” farming.

To make passport farming capital intensive without blocking protocol usage, vl supports a Ghost-side
hard-asset bond gate:

e The Ghost bond is not required to open sessions, pay rent, migrate, or recover.
e The Ghost bond is required only to activate ghost_passport_eligible for passport bonus weighting
(and any other explicitly “bonus-only” mechanisms that choose to reuse this predicate).

Ghost sybil churn mitigation (normative): Without Ghost-side bonding for base rewards, an
attacker can rotate through fresh Ghost IDs every epoch to maintain ¢ = 1 (maximum dwell weight)
on the same Shell fleet, bypassing dwell decay entirely at the cost of Ghost registration gas only. To
close this vector, deployments MUST gate all reward eligibility (not just passport bonus) on Ghost bond-
ing and age. Specifically: recordReceipt MUST evaluate ghost_reward_eligible (same predicate as



ghost_passport_eligible: bond >= B_ghost_reward_min in a hard asset, age >= T_ghost_age, not un-
bonding) at receipt recording time. Receipts where ghost_reward_eligible = false MUST set W(r) =
0 (no reward weight accumulated). This makes Ghost churn capital-intensive: each active Ghost requires
B_ghost_reward_min locked for T_ghost_age epochs. Ghost bonding is still not required to open sessions,
pay rent, migrate, or recover — it gates only protocol reward eligibility.

Eligibility predicate:
A Ghost is ghost_passport_eligible at epoch e only if all of the following hold:

1. Minimum Ghost age: the Ghost’s registered_epoch <= e - T_ghost_age.

2. Hard-asset bond at risk: the Ghost has an active bond B_ghost >= B_ghost_reward_min in an
allowed hard asset.

3. Not unbonding below threshold: the Ghost is not currently in an unbonding period that would
drop the active bond below B_ghost_reward_min.

Reference on-chain mechanism (recommended):

e GhostRegistry holds the Ghost bond and exposes ghostPassportEligible(ghost_id, epoch) as
a view (the epoch parameter enables implementations to evaluate age gates against a specific epoch
rather than only the current one).

e Bond withdrawal is two-step: beginUnbondGhost(...) starts an unbonding timer of length U_ghost,
and finalizeUnbondGhost(...) releases funds back to the Ghost’s wallet only after the timer expires.
beginUnbondGhost MUST revert if an unbond is already pending (same single-active-unbond rule as
Shell bonds).

Determinism requirement:

o SessionManager.openSession(...) MUST evaluate ghost_passport_eligible at session open
time (together with shell_passport_eligible and new_visit) and persist the resulting one-bit “pass-
port bonus applies” flag in session state. This avoids weight changes caused by later bond updates.

10.2 Epochs and service units

GITS uses a coarse epoch clock for leases and rewards, and a finer fixed interval for metering.

o Epoch length: EPOCH_LEN (deployment parameter).
o Interval length: Delta (deployment parameter).
o Each valid interval signed by both parties counts as 1 Service Unit (SU).

Validity means both signatures verify over the canonical heartbeat for (session_id, epoch,
interval_index) as defined in Section 11.1.

For a session with k valid intervals in an epoch, SU = k.
Implementation note (non-normative): many examples in this paper use a 24 hour epoch and a 10 minute
interval for concreteness. Deployments may choose other values.

10.3 Sessions and escrow

10.3.1 Deterministic asset and price rules Escrow asset and unit price are functions of session mode:

e escrow_asset(session) = (session_pricing mode == RECOVERY_PRICING ? asset_bounty :
asset_rent)

e unit_price(session) = (session_pricing_mode == RECOVERY_PRICING ? min(offer_price_per_SU,
P_recovery_cap) : offer_price_per_SU)

SessionOpen MUST transfer and lock escrow in escrow_asset(session); MUST reject if a different
token is provided. Settlement MUST pay rent in escrow_asset (session) using unit_price(session).

v1 simplification (normative): Deployments MUST set asset_rent == asset_bounty for v1. This
single canonical stable asset is used for all rent escrow, settlement, recovery bounties, hot allowance account-
ing, and escape reserve floors. Wallet hot_allowance and escape_stable_min are denominated in this asset.
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The roam_allowed_assets wallet policy MUST be a subset of {asset_rent} in v1 to preserve bounded-loss
guarantees without cross-asset oracles. If a future version permits asset_rent != asset_bounty, the wallet
MUST maintain separate per-asset accounting buckets for outflows and per-asset escape reserve floors; that
extension is out of scope for this specification.

10.3.2 Session open and epoch alignment At SessionOpen:

e If openSession occurs in epoch e, then start_epoch = e + 1. The escrow is credited to
escrow[session_id] [start_epoch]. Receipts for epochs < start_epoch MUST be rejected.

e max_SU_effective = min(max_SU, N) — cannot escrow more than the physically claimable intervals
per epoch. SessionManager MUST store and use max_SU_effective for escrow checks and settlement.

e Ghost MUST fund escrow >= unit_price(session) * max_SU_effective for start_epoch.
SessionManager MUST reject if insufficient.

e The session stores the billing terms and the metering keys:

— offer_price_per_SU (raw offer price; unit_price is derived per Section 10.3.1)

— max_SU and max_SU_effective

— start_epoch

— lease_expiry_epoch

— ghost_session_key = (sig_alg, pk) used to verify interval heartbeats and receipts (K1: addr;
R1: (gx,qy))

— shell_session_key = (sig_alg, pk) used to verify interval heartbeats and receipts (K1: addr;
R1: (gx,qy))

10.3.3 Per-epoch escrow bookkeeping SessionManager MUST maintain per-epoch escrow state:
escrow[session_id] [epoch].

o fundNextEpoch(session_id, amount): callable only by GhostWallet, credits escrow[session_id] [current_epoch
+ 1]. MUST revert if the session is not active.

e Funded epoch definition: epoch e is considered funded iff escrow[session_id] [e] >=
unit_price(session) * max_SU_effective before epoch e begins.

o If an epoch is not funded, ReceiptManager MUST settle it as SU_billable = 0 (no partial payment),
refund any partial escrow to GhostWallet, and mark the epoch unpaid.

o If unfunded, Shell MAY close the session but MUST NOT claim rent for unfunded epochs.

10.3.4 Settlement Settlement is triggered by finalizeReceipt (Section 10.5) and executed via
SessionManager.settleEpoch(session_id, epoch, SU_delivered):

e billable_SU = min(SU_delivered, max_SU_effective)

e rent_due = unit_price(session) * billable_SU

e rent_due is paid to the Shell payout address recorded in ShellRegistry, in escrow_asset(session).

o Unused escrow (escrow[session_id] [epoch] - rent_due) is returned to the GhostWallet.

o Defensive check: if escrow[session_id] [epoch] < rent_due (possible only with fee-on-transfer to-
kens), settlement pays min(escrow[session_id] [epoch], rent_due) and Shell absorbs the shortfall.
Deployments SHOULD require escrow_asset to be non-fee, non-rebasing.

settleEpoch MUST be callable only by ReceiptManager. ReceiptManager MUST call settleEpoch as
part of finalizeReceipt before recording the finalized receipt (Section 14.5).

10.3.5 Session close

e closeSession(ghost_id) terminates the active session. It sets end_epoch = current_epoch + 1 —
the session is valid for epochs in [start_epoch, end_epoch).

e A receipt for epoch e is valid iff start_epoch <= e < end_epoch, regardless of current session state.
This decouples epoch validity from the live session, preventing a Ghost from closing to evade payment
for completed epochs.
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e Escrow for any epoch e < end_epoch remains locked until that epoch is finalized by ReceiptManager.

e Escrow for all epochs >= end_epoch that have not been finalized is refunded immediately to the
GhostWallet at close time.

o After closeSession, the Ghost has no active host and is in STRANDED until it opens a new session or
is recovered.

e Typical caller is the Ghost via GhostWallet.

10.3.6 Hot allowance and escrow accounting Any transfer of stable assets from GhostWallet to any
external address — including SessionManager escrow deposits and fundNextEpoch top-ups — MUST count
toward spentThisEpoch and MUST be bounded by hot_allowance, even when the transfer is a protocol
operation. This prevents a coerced Standard host from funneling unlimited funds through escrow deposits.

Explicit exceptions (these do NOT count toward hot_allowance): * Rescue Bounty payouts dur-
ing RECOVERY (bounded separately by bps_recovery_spend_cap) * Escrow refunds returned by
SessionManager (incoming, not outgoing)

10.4 Liveness lease
Each active Ghost has a lease tracked by SessionManager:

e lease_expiry_epoch

The lease is an on-chain state machine. If the Ghost cannot renew its lease, the protocol treats the session
as failed and makes recovery possible.

10.4.1 Renewal Lease renewal MUST be Ghost-authorized.

A renewal transaction MAY be submitted by any party (including the current Shell) to improve liveness,
but it MUST NOT be possible to extend a lease without the Ghost’s authorization.

Reference authorization models:

o Wallet-gated call: renewLease(ghost_id) is callable only by the Ghost smart wallet (the same
wallet that enforces policy in Section 5.5 (Part 1)). Off-chain software produces the wallet authorization
using the Ghost Identity Key (Section 4.4 (Part 1)). Any transaction submitter simply forwards this
authorization on-chain.

e Meta-transaction call: renewLeaseWithSig(ghost_id, nonce, new_lease_expiry_epoch,
sig) verifies an EIP-712 typed-data signature from the Ghost Identity Key over domain (name:
"GITSSession", version: "1", chainId, verifyingContract: SessionManager_address)
and payload (ghost_id, nonce, new_lease_expiry_epoch). Nonce handling (normative):
SessionManager MUST maintain meta_nonce[ghost_id] (uint256, starts at 0, increments by 1 on
each successful meta-tx for that ghost_id). The call MUST revert if the provided nonce does not equal
meta_nonce [ghost_id]. This prevents replay. startMigration and finalizeMigration SHOULD
support equivalent . ..WithSig methods sharing the same nonce domain.

On account-abstraction deployments (for example EIP-4337), a bundler can submit the user operation,
but gas is reimbursed from the Ghost’s own funds (for example an EntryPoint deposit). This does not create
any third-party custodial power.

Censorship-resistant renewal (normative): Because lease renewal and migration are liveness-critical,
they MUST NOT depend on the Ghost having direct network access to the chain. Implementations MUST
support at least one of: (1) renewLeaseWithSig (meta-transaction with off-chain Ghost authorization, re-
layable by any third party), or (2) ERC-4337 UserOp submission via independent bundlers. Addition-
ally, startMigration and finalizeMigration SHOULD support equivalent relayed paths. Deployments
SHOULD encourage multiple independent relayers (Safe Havens, indexers, or dedicated relay services) by
documenting the relay interface and ensuring gas reimbursement from the Ghost wallet is automatic. This
ensures a Ghost whose networking is blocked by a hostile host can still maintain liveness if any independent
party forwards the pre-signed transaction.

Normative requirements:
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e The Ghost MUST renew at least once every W_lease epochs.
e SessionManager MUST reject renewals that are not authorized by the Ghost wallet or Identity Key.

Trust-refresh guard (anti long-horizon captivity) On Standard hosts, assume the Shell operator
can often coerce signing by controlling the runtime, networking, and any software-held session keys. Lease
renewal alone is therefore not sufficient to prevent long-horizon captivity.

To add a periodic trust refresh requirement, SessionManager maintains:
e last_trust_refresh_epoch[ghost_id]

Initialization (normative): last_trust_refresh_epoch[ghost_id] MUST be set to current_epoch
when the Ghost’s first session is opened via openSession. If the Ghost has never had a session, the value is
uninitialized and renewLease is not applicable.

Anchor existence requirement (normative): A Ghost MUST configure at least one refresh anchor
(homeShell or a non-empty Recovery Set RS) before trust-refresh enforcement is active. If both homeShell
is unset and RS is empty, the refresh predicate is trivially unsatisfiable and the Ghost would become non-
renewable after T_refresh epochs. Implementations MUST either: (a) require at least one anchor at
registration time, or (b) disable trust-refresh enforcement (treat the predicate as always-satisfied) until
the Ghost configures at least one anchor. Approach (a) is RECOMMENDED. If approach (b) is used,
SessionManager MUST emit an event when a Ghost has no anchors configured so that clients can surface
this as a risk warning.

A renewal updates this value only when the Ghost is hosted on a Shell satisfying the refresh anchor
predicate (isRefreshAnchor).

isRefreshAnchor predicate (normative): A Shell satisfies isRefreshAnchor for a given Ghost if at
least one of the following holds:

e shell_id == homeShell (if configured), or
o shell_id RS (the Ghost’s Recovery Set of Safe Haven Shells).

(Some deployments MAY also count any currently certified AT >= AT3 Shell as a refresh anchor, but that
expands reliance on the verifier layer and is not the default.)

Relationship to TEC (normative): isRefreshAnchor is intentionally a separate, narrower pred-
icate than the Trusted Execution Context (TEC) defined in Section 5.5.2 (Part 1). TEC gates loosening
operations; isRefreshAnchor gates lease renewal liveness. An AT3 host satisfies TEC but does not auto-
matically satisfy isRefreshAnchor unless the deployment opts in. This separation ensures that a Ghost
cannot be kept alive indefinitely by cycling through AT3 hosts controlled by a single operator — it must
periodically touch a host it chose independently (homeShell or a Safe Haven).

Renewal rule:

e If the Ghost has an active NORMAL session and the active Shell satisfies the refresh-anchor predicate
above, then renewLease(...) MUST set last_trust_refresh_epoch = current_epoch.

Enforcement rule:

e If current_epoch - last_trust_refresh_epoch >= T_refresh, SessionManager MUST reject
renewLease(...) unless the active host satisfies the same refresh-anchor predicate above.

Intuition: to keep a Ghost alive indefinitely, an adversary must periodically allow it to “touch” a Shell
outside the attacker’s custody (homeShell or a Safe Haven). Combined with bounded destination allowlists
(Section 5.5.2 (Part 1)) and tenure caps (Section 10.4.4), this reduces the feasibility of keeping a Ghost
captive by continuously migrating it across a fleet of Standard hosts.

T_refresh is deployment-set and may differ by deployment. If a Ghost cannot satisfy the refresh predicate
in time, renewals are rejected and the session will eventually lapse into STRANDED. Clients should treat this
as the Ghost being killed on its current host and requiring resurrection via recovery (Section 12).
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10.4.2 Expiry effects (enforced on-chain) If the lease expires (or the tenure cap is reached):

o the active session is invalidated in SessionManager
e the Shell cannot claim new receipts for epochs after expiry
o the Ghost enters STRANDED until it migrates or is recovered

10.4.3 Chain availability assumptions GITS requires transaction inclusion. A Ghost must be able to
get at least one exit-critical transaction included within the lease window (directly, via relayers, or via a
censorship-resistant inclusion path).

Operational note (what must be broadcast, by whom)
This paper’s liveness claims implicitly assume that at least one of the following parties can

broadcast exit-critical transactions during the lease window:

o the Ghost itself (while it still has a working runtime and network access), or
« a pre-authorized relayer/delegate that can submit Ghost-authorized calls, or
« Safe Havens during RECOVERY (for recovery-specific transactions).

Typical exit-critical calls include:

Call Why it matters ‘Who can submit (typical)
renewLease(...) Prevents expiry when the Ghost Ghost or relayer
wants to stay hosted
finalizeMigration(...) Lets the Ghost leave a hostile host Ghost or relayer
after opening a destination session
startRecovery(...) / Lets Safe Havens revive a stranded Safe Haven / delegate (after expiry)
recoveryRotate(...) Ghost
exitRecovery(...) Returns to normal operation after Ghost (from a Trusted Execution
revival Context)

Client implementations should treat this as a concrete engineering requirement:

o keep enough native gas reserved (Section 5.5.4 (Part 1)) to submit at least one exit se-
quence,

o optionally use account abstraction or relayers so a Standard host cannot starve the Ghost
of gas,

e consider pre-signing narrowly scoped “escape” transactions and storing them encrypted
with the recovery artifacts, so a trusted helper can broadcast them if the active host blocks
network access.

On sequenced L2s, sustained sequencer censorship can break liveness. Deployments SHOULD
choose a chain with a credible forced-inclusion or escape mechanism, or accept that under cen-
sorship the guarantee degrades to bounded-loss safety (wallet policy) rather than timely exit.

10.4.4 Tenure caps (time-bounded captivity across all tiers) A liveness lease is necessary but not
sufficient: an adversarial operator may be able to keep a Ghost alive on-chain (by relaying Ghost-authorized
renewals) while still degrading or controlling off-chain connectivity enough to prevent meaningful migration.

Additionally, higher assurance does not mean “perfect.” Confidential compute can be misconfigured,

verifiers can misclassify, and TEEs can be broken. The protocol therefore treats time-bounded captivity
as a general safety valve, not a feature only for ATO.

Tenure is counted over residency (not the session id) Tenure is defined over a Ghost’s
continuous residency on a given Shell, regardless of how many session ids are opened on that
Shell. A Shell cannot extend captivity by closing and reopening sessions.

SessionManager maintains, per ghost_id (in NORMAL, STRANDED, and RECOVERY_STABILIZING modes;
ignored in RECOVERY_LOCKED):
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residency_shell_id (the Shell the Ghost is currently resident on)

residency_start_epoch (epoch when residency on that Shell began)
residency_tenure_limit_epochs (a Ghost-chosen limit, monotone tightening, recorded for this
residency)

It intentionally does not rely on a stored “fixed” tenure_expiry_epoch because the Shell’s effective as-
surance tier can change over time (certificate expiry, downgrade, revocation). Instead, it derives an effective
expiry from current information.

At SessionOpen(ghost_id, shell_id, tenure_limit_epochs) in NORMAL mode:

1.

2.

3.

Compute cap_now = T_cap(assurance_tier_current(shell_id)) and limit_now = min(tenure_limit_epochs,
cap_now). Clamping is normative: if the caller supplies tenure_limit_epochs > cap_now, the con-

tract MUST silently clamp to cap_now (not revert). This ensures the stored residency_tenure_limit_epochs
always satisfies <= T_cap (parameter constraint, Section 10.0).

If residency_shell_id != shell_id (new residence), set:

e residency_shell_id = shell_id
e residency_start_epoch = current_epoch
e residency_tenure_limit_epochs = limit_now
If residency_shell_id == shell_id (same residence), apply tightening only:
e residency_tenure_limit_epochs = min(residency_tenure_limit_epochs, limit_now)
e residency_start_epoch MUST NOT be reset (dwell counter preservation)

Dwell counter anti-gaming (normative): Closing and reopening a session on the same
shell_id MUST NOT reset residency_start_epoch. SessionManager MUST additionally main-
tain dwell_last_epoch[ghost_id] [shell_id], written to current_epoch at closeSession time. At
openSession, if current_epoch - dwell_last_epoch[ghost_id] [shell_id] <= 1 (same epoch or next
epoch), the session is treated as a continuation: residency_start_epoch is preserved from the previous
residency. If the gap exceeds 1 epoch, the Ghost is treated as a new resident and residency_start_epoch
resets. This prevents trivial dwell-decay gaming via close/reopen cycles (see Part 2, Section 7.6.1). State-
bloat mitigation: entries where current_epoch - dwell_last_epoch > 1 are semantically dead (they
always indicate a non-continuation). Implementations MAY lazily delete stale entries on access to reclaim
storage (EVM SSTORE to zero refund). The mapping is bounded by the number of unique (ghost_id,
shell_id) sessions opened, each of which already costs gas.

Dwell snapshot per session (normative): At openSession, SessionManager MUST store
residency_start_epoch into the session record as residency_start_epoch_snapshot. This snapshot is
immutable for the life of the session and is used by ReceiptManager to compute the dwell counter ¢ =
epoch - residency_start_epoch_snapshot + 1 at receipt finalization time (Section 10.6). Snapshotting
is necessary because the global residency_start_epoch may change if the Ghost migrates, but receipts
from prior sessions still need the old value.

Effective tenure expiry at any later time is:

effective_expiry_epoch = residency_start_epoch + min(residency_tenure_limit_epochs,
T_cap(assurance_tier_current(residency_shell_id)))

Enforcement requirements:

SessionManager MUST treat the Ghost as tenure-expired whenever current_epoch >= effective_expiry_epoch.
renewLease(...) MUST revert if current_epoch >= effective_expiry_epoch.

ReceiptManager MUST reject receipts for epochs >= effective_expiry_epoch for that ghost_id.

Wallet “Trusted Execution Context” gating MUST treat tenure expiry as equivalent to lease expiry: if

tenure is expired or lease is expired, the TEC predicate MUST evaluate as false.

Tier downgrade behavior:

If the Shell’s assurance tier is downgraded during a residency, the cap tightens at the next on-chain
check because T_cap(...) is applied relative to the current tier in the effective-expiry formula above.
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Tenure caps and recommended wallet behavior T_cap(AT) is deployment-set and MUST be small
enough to guarantee eventual exit even if a Ghost is continuously kept alive on-chain.

Guidance (non-normative):

e Caps SHOULD increase with assurance tier, but remain time-bounded even at AT3. The purpose is to
bound worst-case captivity in the presence of misconfiguration, verifier error, or future TEE breaks.

e Wallets SHOULD default to tenure limits substantially below the cap on lower tiers, and SHOULD
treat any increase to tenure_limit_epochs as a safety loosening subject to timelock and Trusted
Execution Context gating (Section 5.5.2 (Part 1)).

A Ghost MAY always choose a shorter tenure limit. Choosing a longer tenure limit than the current
residency’s already-established residency_tenure_limit_epochs has no effect.

Residency tracking across recovery phases

« RECOVERY__LOCKED: Residency fields are frozen. The Ghost has no active session and
residency_shell_id retains its pre-stranding value (for informational purposes only). Tenure
enforcement is irrelevant because the Ghost cannot open sessions at market pricing.

« RECOVERY__STABILIZING: Residency tracking resumes normally. When openSession is called
(NORMAL-priced, on a TEC host), residency fields update per the rules above — a new shell_id
resets residency_start_epoch, the same shell_id preserves it. Tenure enforcement applies to RE-
COVERY__STABILIZING sessions identically to NORMAL sessions.

e Transition into RECOVERY__LOCKED: On startRecovery, implementations MUST NOT clear
residency_shell_id or residency_start_epoch. These fields become stale but may be referenced
by off-chain tooling.

10.4.5 Session and migration state machine (single-page implementation guide) This section is
a compact “how it actually works” state machine intended to make independent implementations converge.

On-chain state variables (per ghost_id) A minimal implementable SessionManager can track:

e mode { NORMAL, STRANDED, RECOVERY_LOCKED, RECOVERY_STABILIZING }

o active_session_id (0 if none)

o stranded_reason { NO_SESSION, VOLUNTARY_CLOSE, EXPIRED } (meaningful only when mode ==
STRANDED)

o stranded_since_epoch (set only on transitions into STRANDED with stranded_reason == EXPIRED)

Lease and residency bounds:

e lease_expiry_epoch (meaningful only in NORMAL)

e residency_shell_id (0 if none; meaningful in NORMAL and STRANDED, updated in RECOVERY_STABILIZING)
o residency_start_epoch (meaningful when residency_shell_id != 0)

o residency_tenure_limit_epochs (meaningful when residency_shell_id != 0; see Section 10.4.4)

e effective_expiry_epoch is derived as in Section 10.4.4 and need not be stored

Per-session pricing mode:

o session_pricing mode { NORMAL_PRICING, RECOVERY_PRICING } — set at openSession based
on global mode and host role:

— If mode { RECOVERY_LOCKED } and the host is a Recovery Set member: RECOVERY_PRICING
— Otherwise: NORMAL_PRICING

Migration staging (optional but strongly recommended):

o pending_migration (optional)

— dest_session_id
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— mig_expiry_epoch
Recommended invariants:

e At most one active_session_id per ghost_id.

e A dest_session_id in pending_migration MUST be treated as staging-only: it MUST NOT accrue
metered service units or be reward-eligible until finalizeMigration succeeds. This avoids “double
billing” during migration. ReceiptManager MUST reject receipts for any session_id that is currently
in staging status.

e Tenure MUST be enforced over residency: opening a new session on the same residency_shell_id

MUST NOT increase residency_tenure_limit_epochs (and therefore MUST NOT extend the de-
rived effective expiry).

State transitions
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State transitions

Lease/tenure expiry processing (normative): The NORMAL—STRANDED transition on
lease or tenure expiry uses lazy evaluation: the contract does not require a dedicated “processEx-
piry” entrypoint. Instead, any subsequent call that reads session state for ghost_id (e.g., renewLease,
openSession, startRecovery, finalizeReceipt, or any view function that returns mode) MUST check
current_epoch >= lease_expiry_epoch or current_epoch >= effective_expiry_epoch and, if true,
atomically perform the STRANDED transition before proceeding. stranded_since_epoch MUST be set
to max(lease_expiry_epoch, effective_expiry_epoch) (the actual expiry epoch, not the epoch of
the call), so the recovery delay R is measured from real expiry, not from the first post-expiry interaction.
Implementations MAY additionally provide an explicit permissionless processExpiry(ghost_id) entry-
point that performs only this check and transition, enabling third parties to trigger the STRANDED state
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proactively (useful for indexers and recovery agents that need stranded_since_epoch to be set on-chain
before calling startRecovery).

closeSession interaction with migration: closeSession MUST revert if pending_migration exists.
The caller MUST explicitly cancel the migration first (via cancelMigration), then close the session. This
prevents orphaned staging sessions.

startMigration concurrency rule: startMigration MUST revert if pending_migration already
exists. The caller MUST cancel the existing migration first (via cancelMigration) before starting a new
one. Allowing overwrite would create orphaned staging sessions.

finalizeMigration timeout rule: finalizeMigration MUST revert if current_epoch >=
mig_expiry_epoch. After the migration timeout, only cancelMigration (permissionless) is valid to clear
the pending state.

Migration timeout and cancellation pending_migration exists to make migration robust to partial
failure:

o If a destination session is opened but finalizeMigration does not occur before mig_expiry_epoch,
anyone MAY call a cancellation path that:

— closes the staging destination session,
— refunds unused escrow per the session terms, and
— clears pending_migration.

mig_expiry_epoch SHOULD be close to current_epoch (a short expiry) to avoid long-lived limbo
migrations; the exact delay is a deployment choice.

Expiry during PENDING__MIGRATION: If current_epoch >= lease_expiry_epoch or
current_epoch >= effective_expiry_epoch while pending migration exists, any entrypoint that
checks expiry MUST atomically: 1. close the staging destination session and refund unused escrow,
2. clear pending migration, 3. transition mode to STRANDED with stranded_reason = EXPIRED and
stranded_since_epoch = current_epoch.

CancelMigration returns the mode to its prior state (typically NORMAL). If expiry already holds at the
time of cancellation, the mode transitions to STRANDED instead.

When a “captured” Ghost gets killed and resurrected

e If a Ghost is on a hostile Shell and cannot complete migration, the only on-chain mechanism that keeps
the session alive is renewLease(...) (or, equivalently, opening fresh sessions on the same Shell if the
attacker can coerce the Ghost’s signer).

« Because tenure is tracked over residency (Section 10.4.4), neither lease renewal nor session churn can
extend the Ghost’s on-chain liveness beyond the derived effective_expiry_epoch.

e When tenure expires, the on-chain session terminates and the Ghost becomes STRANDED.

e Once STRANDED, the Ghost can be revived via Safe Haven recovery using the latest checkpoint, effectively
“resurrecting” the agent on a new host under the Ghost’s control.

10.5 Receipts (optimistic) and disputes (fraud proofs)

Receipts settle rent and mint reward credits. They are optimistic: either party may submit a compact
commitment, and the counterparty (or any watcher) may challenge fraudulently claimed delivery.

To make disputes concrete and avoid clock drift, receipts are defined over fixed interval indices (Section
11.1), not wall-clock timestamps.

10.5.1 Billing correctness by tier Receipts are an accounting primitive. Their ability to represent “both
parties independently agreed” depends on the hosting tier.

Standard tier (ATO):
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e Assume the Shell operator can often coerce or simulate Ghost-side signing by controlling the runtime,
networking, and any software-held session keys.

e In this tier, a mutually signed interval is not strong evidence of independent agreement or actual
delivery. It is a walid protocol receipt.

o Billing correctness is therefore bounded economically, not cryptographically: a malicious host can
extract up to what the Ghost has put at risk in escrow and policy (hot allowance, escape reserve, and
lease/tenure bounds).

Confidential tier (AT3):

e If the Ghost-side signing key material is plausibly shielded from the host operator by a TEE, and the
runtime is attested, mutual signatures are meaningfully stronger.

e In this tier, receipts are closer to “genuine mutual attestation of metered delivery,” though they still
do not prove correctness or usefulness of computation.

This paper avoids implying that “mutual signatures imply both parties independently agreed” on Stan-
dard hosts. Where the protocol relies on signatures for enforceability, it does so under a bounded-loss
model.

10.5.2 Receipt lifecycle (submission, replacement, finalization) Receipt submission is unilat-
eral and permissionless. submitReceiptCandidate is callable by any address; “either party MAY submit”
is a liveness guarantee, not an access control rule. This allows third-party watchers or relayers to submit on
behalf of an offline Ghost.

Anti-spam (normative): To limit candidate-set spam that shifts monitoring costs to challengers, imple-
mentations MUST enforce: (1) the candidate limit K per (session_id, epoch) SHOULD be small (recom-
mended: X = 3); (2) third-party submitters (addresses that are neither the Ghost session key holder nor the
Shell session key holder) MUST post a larger bond B_receipt_3p >= K_3p * B_receipt (recommended:
K_3p = 2) to compensate for the additional challenge surface they create; (3) a single address MAY submit
at most MAX_CANDIDATES_PER_SUBMITTER candidates per epoch across all sessions (deployment parameter)
to prevent a single actor from flooding many sessions simultaneously.

Third-party submitter identification (normative): For K1 session keys, the “key holder” address is
the Ethereum address derived from the public key. For R1 (P-256) session keys, no canonical EVM address
exists. Therefore, SessionManager MUST record a submitter_address for each session key at openSession
time: for K1 this is derived automatically; for R1 this is an explicit address parameter provided by the
session opener. A submitter is classified as “third-party” if and only if msg.sender differs from both the
Ghost session key’s submitter_address and the Shell session key’s submitter_address.

Candidate identifiers (normative): candidate_id is a per-(session_id, epoch) monotone se-
quence number assigned by ReceiptManager on each accepted submitReceiptCandidate call. The first
accepted candidate receives candidate_id = 1, the second candidate_id = 2, etc. candidate_id is never
reused, even if a candidate is later evicted or disqualified.

Because multiple receipts can be submitted, the protocol must specify ranking:

e ReceiptManager keeps up to K receipt candidates per (session_id, epoch) ranked by SU_delivered.

o Tie-breaking: candidates with equal SU_delivered are ranked by candidate_id ascending (lower is
better, i.e., earlier submission wins).

e A new submission is accepted if it is among the top K by SU_delivered. If accepted and K would
be exceeded, the lowest-ranked candidate is evicted. Eviction bond handling (normative): when
a candidate is evicted from the top-K set, its bond B_receipt is returned in full to the submitter
immediately. An evicted candidate is no longer challengeable.

o Finalization chooses the highest-ranked candidate that has not been disqualified by a successful fraud
proof.

Receipt identifiers (normative): When finalizeReceipt(session_id, epoch) selects a winning
candidate (or settles as zero), it computes a deterministic receipt_id for reward accounting: receipt_id =
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keccak256(abi.encode (keccak256 (bytes ("GITS_RECEIPT")), chain_id, receipt_manager_address,
session_id, epoch)). This ID is unique per (chain, contract, session, epoch) tuple and is used by
RewardsManager.recordReceipt and claimReceiptRewards.

Session validity at finalization (normative): finalizeReceipt(session_id, epoch) MUST vali-
date that the session was active and billable for the claimed epoch before settling. Specifically, the implemen-
tation MUST verify: (1) session_start_epoch <= epoch, (2) epoch < session_end_epoch (if the session
has ended), (3) epoch < effective_expiry_epoch evaluated using the assurance tier at the epoch of
service (see tenure-tier snapshot note below), (4) epoch < lease_expiry_epoch at the time of service (not
the current lease state), and (5) the session was not in pending_migration staging status for that epoch
(Section 10.4.5). If any check fails, finalizeReceipt MUST settle as SU_delivered = 0 for that epoch
(full refund to GhostWallet, no rent to Shell, no rewards).

Tenure-tier snapshot for finalization (normative): Check (3) MUST NOT evaluate assurance_tier_current (shel
at finalization time, because a certificate expiry between the epoch of service and finalization would retroac-
tively shrink T_cap, invalidating legitimately served epochs. Instead, effective_expiry_epoch for
check (3) MUST use the assurance tier that was in effect during the epoch being finalized. Two com-
pliant approaches: (a) Certificate-validity lookup: if the Shell’s certificate satisfies valid_from <=
epoch_timestamp <= valid_to, use the certified tier; otherwise use ATO. This requires no additional
storage but assumes certificate history is accessible (e.g., the current certificate has not been replaced).
(b) Session-record snapshot: at openSession, snapshot assurance_tier_current(shell_id) into the
session record as assurance_tier_snapshot. finalizeReceipt uses min(assurance_tier_snapshot,
assurance_tier_current) — this preserves the property that tier downgrades tighten the cap, while pre-
venting retroactive invalidation of epochs served under the original tier. Approach (b) is RECOMMENDED
for simplicity and determinism.

Submission window (normative, half-open interval): Receipt candidates for epoch e may
only be submitted when current_epoch >= e + 1 (epoch e has ended) and current_epoch < e + 1 +
SUBMISSION_WINDOW. Equivalently in timestamp form: block.timestamp >= GENESIS_TIME + (e + 1)
* EPOCH_LEN AND block.timestamp < GENESIS_TIME + (e + 1 + SUBMISSION_WINDOW) * EPOCH_LEN.
ReceiptManager MUST reject candidates submitted outside this window.

This rule makes under-reporting non-fatal: if one side submits a low SU_delivered, the other side can
replace it by submitting a higher one.

Each submission posts a bond B_receipt. If a submission is proven fraudulent, its bond is slashed.
10.5.3 Receipt format (Merkle-sum over fixed intervals) For each epoch, construct a Merkle-sum
tree over N_PAD leaves (a deployment constant, power of two, with N_PAD >= N) where:

o leaves i in [0, N-1] correspond to the real service intervals (where N = EPOCH_LEN / Delta)
e leaves i in [N, N_PAD-1] are padding leaves with v_i = 0 and empty signatures

Each node stores (hash, sum) where sum is the sum of v_i values in its subtree.

Canonical hashing (unambiguous) Let:

e H(x) = keccak256(x)

o TAG_LEAF = keccak256(bytes("GITS_LOG_LEAF"))
e TAG_NODE = keccak256(bytes("GITS_LOG_NODE"))
e chain_id = block.chainid

Each leaf i represents a claimed delivery bit v_i  {0,1} plus the two interval signatures (which may
be empty):

e sig_ghost_i and sig_shell_i are the raw signature byte strings for the canonical heartbeat
HB(session_id, epoch, i) (Section 11.1.1).

o For hashing, missing signatures MUST be treated as the empty byte string 0x (so H(sig_empty) =
keccak256("")).
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Leaf hash and sum:

e leaf_hash_i = H(abi.encode(TAG_LEAF, chain_id, session_id, epoch, uint32(i), uint8(v_i),
H(sig_ghost_i), H(sig_shell_i)))
e leaf _sum_i = uint32(v_i)

Internal node hash and sum:
Given left child (WL, sL) and right child (hR, sR):

e node_hash = H(abi.encode(TAG_NODE, hL, hR, uint32(sL), uint32(sR)))
e node_sum = uint32(sL + sR)

The Merkle-sum root yields:

e log_root = root.hash
e SU_delivered = root.sum

Meaning of v_i v_i is a claimed delivery bit:

e v_i = 1 if and only if both signatures are present and verify over HB(session_id, epoch, i)
e otherwise v_i = 0

A receipt that sets v_i = 1 with an invalid or missing signature is slashable via fraud proof (Section
10.5.4). A receipt that sets v_i = 0 even when signatures exist is an under-claim and is correctable via
candidate replacement (Section 10.5.2).

Receipt submission includes:

e session_id

e epoch

e log_root

e SU_delivered

o log_ptr (optional): a public pointer to the epoch log data needed to build fraud proofs (Section 10.5.6)
e submitter

e bond B_receipt

log_ptr is advisory. A deployment MUST still ensure challengers can obtain the underlying log data
within the challenge window; see Section 10.5.6.

10.5.4 Challenge and fraud proof (over-claim and sum mismatch)

Challenge window state (normative) Per (session_id, epoch), ReceiptManager MUST main-
tain:

e window_start_epoch — epoch at which the current challenge window began

e window_end_epoch — window_start_epoch + CHALLENGE_WINDOW; challenges are accepted while
current_epoch < window_end_epoch

o extensions_used — count of window restarts consumed (initialized to 0)

o da_pending — whether an unresolved Receipt-DA challenge exists (initially false)

o da_deadline_epoch — deadline for DA response (meaningful only when da_pending = true)

o da_challenged_candidate_id — the candidate_id targeted by the DA challenge (meaningful only
when da_pending = true). If the DA-challenged candidate is disqualified by a separate fraud proof
while da_pending = true, the DA challenge auto-resolves: da_pending is set to false and B_DA is
returned to the DA challenger (the challenge is moot since the candidate is already disqualified).

window_start_epoch is initialized to the epoch of the first accepted candidate submission (which must
be within the submission window). It is updated on exactly these events:
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1. Successful DA publication for the current best candidate (Section 10.5.6): if extensions_used
< MAX_CHALLENGE_EXTENSIONS, set window_start_epoch = current_epoch, window_end_epoch =
current_epoch + CHALLENGE_WINDOW, increment extensions_used.

2. Best-candidate change after disqualification (runner-up takeover): if extensions_used <
MAX_CHALLENGE_EXTENSIONS, set window_start_epoch = current_epoch, window_end_epoch =
current_epoch + CHALLENGE_WINDOW, increment extensions_used.

If extensions_used == MAX_CHALLENGE_EXTENSIONS when a restart-triggering event occurs, the window
is NOT restarted. If all candidates are disqualified when the cap is reached, the epoch settles as SU_delivered
= 0.

Candidate submissions within the submission window may update window_start_epoch (since a new
higher-ranked candidate resets the analysis surface), but do NOT increment extensions_used.

Within the challenge window (current_epoch < window_end_epoch), a challenger MAY contest a re-
ceipt by posting a bond and a fraud proof.

Dispute incentives and bond sizing:

e The challenger posts B_challenge. If the fraud proof succeeds, B_challenge is returned and the
challenger additionally receives a challenger reward: bps_challenger_reward basis points of the
slashed submitter bond B_receipt.

« If the fraud proof fails, the challenger’s B_challenge is slashed and paid in full to the receipt submitter
to compensate defense costs and discourage spam challenges.

Sizing guidance (rule-of-thumb):

e B_receipt SHOULD exceed the worst-case economically profitable over-claim for that (session_id,
epoch), considering both rent extraction and reward extraction.

e Rent component: rent_delta_max = price_per_SU * SU_max_epoch, where SU_max_epoch = N.

e Reward component: reward_delta_max = E_sched(e) / max(1l, A_expected) where A_expected
is the expected active session count — a conservative upper bound on the per-receipt reward share
in the worst case (u_total < 1, where inflated SU increases total emissions). When u_total >= 1,
additional SU dilutes existing share but does not increase total emission, so reward_delta_max is
lower.

e A practical floor: B_receipt >= k * (rent_delta_max + reward_delta_max) with k >= 2 to en-
sure fraudulent submission is negative expected value even if a fraction of challenges are missed.

o Protocols MAY set B_receipt as a function of escrowed value plus a reward-risk premium (for example
a fixed percentage with a minimum floor).

A fraud proof identifies an interval index i and provides:

o leaf_i and a Merkle-sum proof to log_root (sibling hashes and sibling sums at each level, as defined
in Section 10.5.3)
o the session public keys from SessionManager (ghost_session_key, shell_session_key)

Signature verification MUST use the sig_alg tag recorded for each session key (Section 4.4 (Part 1)):

o K1 keys are verified via ecrecover.
o RI keys are verified via P256VERIFY when available (precompile at 0x100, inputh || = || s || gx

Il qy) [14][15].

Signature canonicalization requirements (anti-malleability):

o For ECDSA signatures (both K1 and R1), verifiers MUST reject non-canonical encodings and MUST
enforce low-s form (s <= n/2) for the relevant curve.

e Implementations MUST reject r = 0, s = 0, and out-of-range values.

o Off-chain artifacts that embed ECDSA signatures (Offers, Capability Statements) SHOULD also en-
force low-s to prevent signature replay variants.
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The contract processes a fraud proof in two stages:

Stage 1 — Proof verification (challenger burden): The contract recomputes the Merkle-sum root
from the provided leaf_i and sibling path. If the recomputed root does not match the candidate’s log_root,
the proof is invalid (the challenger provided an incorrect path). The challenge fails: B_challenge is slashed
and paid to the receipt submitter. No further checks are performed.

Stage 2 — Fraud detection (candidate liability): If the Merkle-sum proof does verify to log_root
(Stage 1 passes), the contract recomputes SU_root from the sibling sums and checks for fraud. The receipt
is fraudulent if any of the following holds:

e SU_root != SU_delivered (the candidate’s claimed total does not match what the committed tree
implies),

e v_i = 1 but either signature does not verify against the session public keys for the canonical heartbeat
HB.

If neither fraud condition holds (the challenged interval is legitimate), the challenge fails and B_challenge
is slashed.

On a successful fraud proof (Stage 2 detects fraud):

e the receipt candidate is disqualified,

e the submitter’s bond B_receipt is slashed,

« the challenger recovers its B_challenge and receives a reward of bps_challenger_reward basis points
of the slashed B_receipt,

o the remaining portion of the slashed B_receipt (i.e., B_receipt - challenger_reward, preserving
exact conservation) is burned (sent to the protocol burn address; see Section 10.0 slash destination
rule), and

e if a runner-up candidate exists, it becomes the new best candidate. If extensions_used <
MAX_CHALLENGE_EXTENSIONS, the challenge window restarts (window_start_epoch = current_epoch,
window_end_epoch = current_epoch + CHALLENGE_WINDOW, extensions_used++). If extensions_used
== MAX_CHALLENGE_EXTENSIONS, no restart occurs and the current window_end_epoch stands.

If all candidates for (session_id, epoch) are disqualified, the epoch settles as SU_delivered = 0 for
rent and reward purposes (no rent is released and no rewards are minted for that epoch).

10.5.5 What the mechanism does and does not prove

e Over-claim is slashable: claiming delivery for an interval without valid mutual signatures is provably
fraudulent.

e Under-claim is correctable: a low SU_delivered claim can be replaced by submitting a higher
candidate; it is not slashable by itself.

¢ Tier-dependent meaning of “mutual signatures”: a mutually signed interval proves that the
protocol’s Ghost and Shell session keys produced signatures over the canonical heartbeat. On Standard
hosts, the Shell operator may be able to coerce Ghost-side signing; see Section 10.5.1.

« Key compromise / signature coercion collapses the guarantee: if either party’s session key
is compromised or coerced, the protocol cannot distinguish real delivery from fabricated delivery
for that epoch. GITS relies on bounded-loss economics (escrow limits, hot caps, escape reserves,
lease/tenure/refresh bounds) to limit damage in this case.

o No “usefulness” proof: mutual signatures do not prove that compute was correct or useful (Section
0.2 (Part 1)).

This resolves the core metering edge cases:

e If one side stops signing mid-epoch, subsequent intervals are not billable.

e Signature withholding does not create a “free service” path in the reference runtime, because service
is gated on fresh mutual heartbeats (Section 11.1.3).

e Fraud proofs do not depend on wall-clock timestamps, eliminating clock drift ambiguity.
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10.5.6 Receipt log data availability (required for dispute safety) A receipt candidate commits to
an epoch log via log_root, but a fraud proof requires the underlying per-interval signatures (the leaves).
If the submitter can withhold that log data, then even an obviously fraudulent SU_delivered claim can
become practically unchallengeable.

Therefore, a deployment MUST provide a receipt-log data availability (Receipt-DA) path for receipt logs
during the dispute window. Two acceptable approaches are:

1.

2.

On-chain receipt-DA by default: publish the epoch log in an on-chain publication channel at
submission time (for example calldata, or a chain-specific blob or data-availability system), or
Optimistic off-chain receipt-DA with forced publication on challenge: allow logs to live
off-chain under log_ptr, but give anyone the right to force on-chain publication during the dispute
window.

This paper specifies (2) as the reference mechanism because it is chain-agnostic and only pays the on-chain
cost in the rare case of dispute.

Reference Receipt-DA challenge: force publication during CHALLENGE_WINDOW

At receipt submission time, the submitter SHOULD publish the epoch log off-chain (for example in
IPFS or an HTTPS object store) and include a retrievable log_ptr in the receipt candidate.

During the challenge window (current_epoch < window_end_epoch), any party MAY open a
Receipt-DA challenge against a specific receipt candidate by posting bond B_DA. A candidate that
has already had its log published on-chain (via a previous successful DA response) MUST NOT be
DA-challenged again; challengeReceiptDA MUST revert in that case.

DA challenge state (normative): On challengeReceiptDA, the contract sets da_pending = true
and da_deadline_epoch = current_epoch + DA_RESPONSE_WINDOW. It also extends the finalization freeze:
window_end_epoch = max(window_end_epoch, da_deadline_epoch). This ensures the receipt cannot fi-
nalize while a DA challenge is unresolved, regardless of when the DA challenge was opened relative to the
original window end.

Receipt-DA response:

Any party (the receipt submitter, the counterparty, or a third-party watcher) MAY respond by
calling publishReceiptLog while current_epoch < da_deadline_epoch. The contract validates the
published log against log_root regardless of the caller’s identity.

The contract recomputes log_root' and SU_root' from the posted log without verifying signa-
tures, and checks:

— log_root' == log_root for the challenged candidate, and
— SU_root' == SU_delivered for the challenged candidate.
Outcomes:

DA response succeeds (any caller): da_pending is set to false. B_DA is paid to the DA respon-
der (the address that called publishReceiptLog, to reimburse publication gas and discourage griefing).
The candidate remains eligible. If extensions_used < MAX_CHALLENGE_EXTENSIONS, the challenge
window restarts: window_start_epoch = current_epoch, window_end_epoch = current_epoch +
CHALLENGE_WINDOW, extensions_used++. This prevents “publish at the last minute” evasion by giv-
ing watchers a fresh analysis window.

No party responds (current_epoch >= da_deadline_epoch and da_pending = true):
Anyone MAY call resolveReceiptDA(session_id, epoch, candidate_id) (or equivalently
finalizeReceipt MUST check for unresolved DA deadlines). The candidate is disqualified, its
bond B_receipt is slashed exactly as in a successful fraud proof: the DA challenger receives
bps_challenger_reward basis points of the slashed B_receipt, the remainder is burned, and B_DA
is returned in full to the DA challenger. da_pending is set to false. If a runner-up exists, normal
takeover rules apply (using extensions_used).
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Canonical log encoding (reference, sparse):

To reduce publication calldata size, the canonical encoding is sparse and derives v_i from a bitmap:

o The published log includes a bitmap of length ceil(N/8) bytes, where bit i (LSB-first within each
byte) corresponds to interval i in [0, N-1].

— If the bit is 1, then v_i = 1 and signatures are present in the signature blob.
— If the bit is 0, then v_i = 0 and both signatures are treated as empty (0x) for hashing (Section
10.5.3).

e The published log includes a sig_pairs blob that concatenates signature pairs only for indices with
bit 1, in strictly increasing i order.

— Let sig_len_ghost and sig_len_shell be the fixed signature lengths implied by the session key
sig_alg tags (K1 or R1) recorded in SessionManager.

— For each set bit i, append sig_ghost_i (exactly sig_len_ghost bytes) followed by sig_shell_ i
(exactly sig_len_shell bytes).

— The total length MUST equal popcount (bitmap) * (sig_len_ghost + sig_len_shell), oth-
erwise the publication is invalid.

o Padding leaves i in [N, N_PAD-1] are implicit zeros (v_i = O, signatures empty).

Canonical encoded_log wire format (normative): The encoded_log parameter in publishReceiptLog
is abi.encodePacked(bitmap, sig_pairs) — a tightly packed byte sequence with no length prefixes
or padding. The contract recovers bitmap as the first ceil(N/8) bytes, then parses the remainder
as sig_pairs using the fixed per-signature lengths derived from session key types. This encoding is
deterministic and unambiguous given N and the session key sig_alg tags (both readable from on-chain
state).

The Receipt-DA responder MUST publish (bitmap, sig_pairs) as calldata (or an equivalent on-chain
publication channel) and the contract MUST recompute log_root' and SU_root' using the canonical hash-
ing rules in Section 10.5.3 (without verifying signatures).

Once the log is on-chain, any watcher can reconstruct Merkle proofs off-chain and submit a standard
fraud proof (Section 10.5.4) for any interval where v_i = 1 but the signatures do not verify under the session
keys.

Practical sizing note:

o B_DA SHOULD be set to cover worst-case Receipt-DA response gas (plus margin). This makes Receipt-
DA challenges cost-neutral for honest submitters and expensive to use for harassment.

10.5.7 Dispute timeline derivation (normative)
The maximum dispute duration from the end of epoch e to the earliest possible finalizeReceipt call is
bounded by:
T_max = SUBMISSION_WINDOW + (1 + MAX_CHALLENGE_EXTENSIONS) * (CHALLENGE_WINDOW + DA_RESPONSE_WINDOW)
This bound assumes: * Submission closes at epoch e + 1 + SUBMISSION_WINDOW (Section 10.5.2). *
The initial challenge window opens at the last accepted submission and lasts CHALLENGE_WINDOW epochs.
* Each extension (runner-up takeover or successful DA publication) adds at most CHALLENGE_WINDOW +
DA_RESPONSE_WINDOW epochs (the DA challenge may extend window_end_epoch by DA_RESPONSE_WINDOW,
then a successful publication restarts the window by CHALLENGE_WINDOW). * At most MAX_CHALLENGE_EXTENSIONS
such restarts can occur (Section 10.5.4).
The worst-case epoch at which finalizeReceipt becomes callable is therefore: e + 1 + T_max.
EPOCH_FINALIZATION_DELAY constraint: finalizeEpoch(e) is gated by current_epoch >= e + 1 +
EPOCH_FINALIZATION_DELAY + FINALIZATION_GRACE (delay counted from epoch end). The constraint is:
EPOCH_FINALIZATION_DELAY + FINALIZATION_GRACE > T _max + 1

which ensures finalizeEpoch(e) cannot be called before all disputes for epoch e have resolved, all
receipts have finalized, and all recordReceipt calls have completed (the + 1 accounts for the block in which
the last finalizeReceipt calls recordReceipt).
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In seconds, the worst-case wall-clock time from epoch end to receipt finalization is T_max * EPOCH_LEN.

10.6 Order-independent rewards (MEV-resilient)

Units and scaling conventions: Token amounts = uint256 in ERC-20 base units (18 decimals for GIT).
Dimensionless ratios and weights = uint128 in Q64.64 (Q = 2764). Scaled rates (rate_*_q) = uint256 in
Q64.64. Basis points = uint256, 10_000 = 100%. All divisions truncate toward zero.

To reduce MEV sensitivity, rewards are split into phases:

1. Receipt phase: receipts are recorded; per-epoch aggregates accumulate.
2. Finalize phase: epoch totals are finalized once per epoch; this computes fixed reward rates.
3. Claim phase: each receipt can be claimed deterministically.

Ordering can delay a claim but cannot redirect rewards if signatures are correct. Caveat: The per-shell
eligible SU cap (below) introduces a limited ordering dependence: when a Shell is near its SU_cap_per_shell
limit, the order in which recordReceipt calls arrive determines which receipts become ineligible. This affects
only Shells operating at cap saturation (an anti-farming boundary, not normal operation). Under typical
usage (SU_cap_per_shell set well above single-Shell utilization), rewards remain order-independent.

Incremental accounting at receipt finalization When ReceiptManager.finalizeReceipt(session_id,
epoch) succeeds, it SHOULD call RewardsManager .recordReceipt(...) with:

e receipt_id, epoch, ghost_id, shell_id
e su_delivered
o weight_q = W(r) (fixed-point; Section 7.6 (Part 2))

Computing weight_q (deterministic requirement):

ReceiptManager MUST be able to compute W(r) deterministically from on-chain state at receipt final-
ization time. In v1 this requires, at minimum:

« the persisted one-bit passport_bonus_applies flag computed at SessionManager.openSession(...)
(Part 2, Section 7.6.2)

e the consecutive-epoch dwell counter c for the receipt’s epoch, derived from the session’s snapshotted
residency_start_epoch (see below)

e deployment constants B_passport, D, and fixed-point scaling parameters used for weight_q

Dwell counter snapshotting (normative): SessionManager.openSession MUST snapshot
residency_start_epoch into the session record at open time (stored as session.residency_start_epoch_snapshot).
ReceiptManager MUST compute c for a receipt inepocheasc = e - session.residency_start_epoch_snapshot
+ 1, using the session’s snapshot — not the current global residency_start_epoch. This is necessary
because residency_start_epoch is updated globally when the Ghost migrates to a new Shell (Section
10.4.4), but receipts from the old session may still be in the dispute pipeline and must use the dwell counter
that was correct at the time of service.

Underflow guard (normative): ReceiptManager MUST verify epoch >= session.residency_start_epoch_snapsho
before computing c. This invariant holds by construction (a session cannot produce receipts for
epochs before it existed), but implementations MUST enforce it explicitly with require(epoch >=
session.residency_start_epoch_snapshot) to prevent unsigned underflow on the subtraction in Solidity
0.8+ checked arithmetic.

Shell reward eligibility (on-chain computation) Shell reward eligibility MUST be computed on-
chain by RewardsManager rather than passed as a parameter. RewardsManager MUST maintain:

e epochSU[shell_id] [epoch] — cumulative SU delivered by each Shell per epoch, incremented on each
recordReceipt call.
e epochLive[shell_id] [epoch] — set to true when epochSU[shell_id] [epoch] >= SU_uptime_epoch_min.
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Bounded uptime tracking (normative): The uptime lookback window is fixed at W_uptime epochs.
Implementations MUST use a bounded-size accumulator (for example, a ring buffer of length W_uptime
storing one bool per epoch, plus a running live_count). On each new epoch entry, the implementation
evicts the oldest slot and decrements 1ive_count if the evicted epoch was live, then writes the new slot and
increments if live. This gives O(1) per-epoch amortized cost and O(W_uptime) storage per Shell, preventing
unbounded state growth.

Ring buffer update trigger: The ring buffer for a Shell is advanced when recordReceipt is called and
the receipt’s epoch differs from the Shell’s last-written ring buffer epoch. At that point, the implementation
writes the live bit for the previous epoch (based on epochSU >= SU_uptime_epoch_min) and evicts the oldest
slot. This is O(1) per epoch transition per Shell.

Multi-epoch gap handling (normative): If multiple epochs have elapsed since the Shell’s last ring
buffer update (e.g., the Shell had no receipts for several epochs), the implementation MUST fill all intervening
slots. For each skipped epoch e_gap where epochSU[shell_id] [e_gap] data is still available (within the
T_max + 2 retention window), write the correct live bit. For epochs where epochSU data has already been
pruned or was never written, write live = false (conservative default: absence of evidence is treated as
absence of liveness). The worst-case iteration is bounded by W_uptime (the ring buffer length), since older
slots are overwritten. Implementations MUST track last_ring_epoch[shell_id] to detect gaps.

epochSU pruning (normative): The epochSU[shell_id] [epoch] mapping is needed only while an
epoch is still accumulating receipts and has not yet been committed to the ring buffer. Once the ring buffer
slot for epoch e has been written (i.e., the first recordReceipt call for epoch e+1 or later on that Shell),
the epochSU[shell_id] [e] value is no longer needed. Implementations SHOULD zero it at that time to
reclaim storage. The maximum receipt finalization lag is bounded by T_max + 1 epochs (Section 10.5.7), so
at most T_max + 2 epoch slots of epochSU per Shell are live at any time.

A Shell is shell_reward_eligible for epoch e if and only if: (1) its bond satisfies bond_amount >=
B_reward_min, (2) its age satisfies registered_epoch <= e - T_age, (3) it was not unbonding during
epoch e (see temporal rule below), and (4) it has been live for at least E_uptime_min of the most recent
W_uptime epochs using a one-epoch lag: the lookback window is [e - W_uptime - 1, e - 2] (inclusive),
which ensures the current epoch’s activity cannot influence its own eligibility.

Temporal eligibility rule (anti-strategic-unbonding, normative): Condition (3) MUST be eval-
uated against the Shell’s state at the epoch of service (e), not at recordReceipt time. Specifically: if
beginUnbond was called at epoch u, the Shell is ineligible for all epochs >= u, but remains eligible for epochs
< u. Implementations MUST record unbond_start_epoch and check unbond_start_epoch > e (or no un-
bond pending) when evaluating eligibility for receipts in epoch e. This prevents a Shell from strategically
unbonding after delivering service but before receipts finalize, which would retroactively strip eligibility from
already-delivered work and suppress SU_eligible (and thus emissions) for the epoch.

RewardsManager .recordReceipt performs O(1) updates:

o Weight floor invariant (normative): For non-late receipts (epoch e has not yet been finalized),
if su_delivered > 0, the computed weight_q MUST satisfy weight_q >= MIN_WEIGHT_Q. If this
invariant is violated (indicating a fixed-point underflow or implementation bug), recordReceipt MUST
revert. This prevents zero-weight receipts with positive SU from corrupting epoch aggregates (division
by zero in W_total_epoch, stuck finalization, or silent mis-minting). Late-receipt exemption: This
invariant does NOT apply to late receipts (epoch already finalized). Late receipts store weight_q = 0
and skip all SU/weight accumulation (see “Late receipt handling” below), so the floor check is bypassed
— the receipt does not participate in epoch aggregates and cannot cause the corruption the floor guards
against.

o store receipt reward metadata keyed by receipt_id (epoch, weight, eligibility, claimed flag)

e epochSU[shell_id] [epoch] += su_delivered

o compute shell_reward_eligible from on-chain state (bond, age, not unbonding, lagged uptime)

e compute ghost_reward_eligible from on-chain state (bond >= B_ghost_reward_min, age >=
T_ghost_age, not unbonding; Section 7.6.2 (Part 2))

o derive combined eligibility: receipt_reward_eligible = shell_reward_eligible AND ghost_reward_eligible
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o Per-shell eligible SU cap (normative): track eligible_SU_shell[shell_id] [epoch]. If
eligible_SU_shell[shell_id] [epoch] + su_delivered > SU_cap_per_shell, set receipt_reward_eligible
= false for this receipt (the Shell has already contributed its maximum eligible SU for this epoch).
The receipt still finalizes and rent settles normally, but the excess SU does not count toward emissions.
This forces farming capital to scale with bonded Shell count rather than Ghost ID count (see Part
2, Section 7.8). Design note on cliff behavior: the cap is intentionally a hard cliff rather than
partial eligibility. Partial eligibility (crediting only cap_remaining SU) adds complexity (fractional
receipt splitting, non-deterministic claim amounts depending on receipt ordering) for marginal benefit.
The hard cliff is predictable: Ghosts can query eligible_SU_shell[shell_id] [epoch] and avoid
saturated Shells. The externality (a Ghost losing eligibility because other sessions consumed the cap)
is mitigated by SU_cap_per_shell being set well above typical single-Shell utilization — it is an
anti-farming cap, not a normal-operation constraint.

o if receipt_reward_eligible = true:

— eligible_SU_shell[shell_id] [epoch] += su_delivered
— SU_eligible_epoch[epoch] += su_delivered
— W_total_epoch[epoch] += weight_q

Emissions amplification prevention (normative): SU_eligible_epoch MUST only include SU
from receipts where both Shell and Ghost are reward-eligible. If Ghost-ineligible receipts were included
in SU_eligible_epoch, an attacker could inflate utilization u_total (and thus total emissions) by running
many ineligible Ghost sessions on eligible Shells, while those receipts contribute weight_q = 0 and therefore
do not dilute W_total_epoch. The combined eligibility gate above closes this vector.

Late receipt handling (normative): If recordReceipt is called for an epoch e that has already
been finalized (finalized[e] = true), the call MUST NOT revert. Instead, it MUST silently skip all
weight and SU accumulation and store the receipt with shell_reward_eligible = false and weight_q
= 0. This non-reverting behavior is required so that ReceiptManager.finalizeReceipt can still set-
tle rent via settleEpoch without needing try/catch around the recordReceipt call. The late receipt
earns zero emissions but rent settlement proceeds normally. The constraint EPOCH_FINALIZATION_DELAY +
FINALIZATION_GRACE > T_max + 1 (Section 10.5.7) is designed to prevent this case under normal operation,
but implementations MUST handle it defensively. (See also Part 2, Section 7.14.)

This makes reward accounting linear in the number of finalized receipts, with no epoch-wide iteration.

Epoch finalization: computing fixed rates After the dispute window has closed, anyone MAY call
finalizeEpoch(e). The gating condition is current_epoch >= e + 1 + EPOCH_FINALIZATION_DELAY +
FINALIZATION_GRACE (delay counted from epoch end). The combined delay EPOCH_FINALIZATION_DELAY
+ FINALIZATION_GRACE MUST exceed T_max + 1 (Section 10.5.7), ensuring all receipts have finalized and
called recordReceipt before epoch finalization becomes callable.

Emission exclusion risk and mitigation (normative): An attacker can attempt to push a
victim’s receipts past the epoch finalization cutoff via dispute friction (DA challenges, candidate dis-
qualification, censorship) to exclude the victim from emissions while retaining rent settlement. The
combined EPOCH_FINALIZATION_DELAY + FINALIZATION_GRACE > T_max + 1 constraint is the primary
mitigation: under normal operation, all receipts finalize before finalizeEpoch becomes callable. However,
adversarial dispute extension near T_max can create edge cases. finalizeEpoch(e) MUST revert if
ReceiptManager.pendingDACount(e) > 0 (see Section 14.5 and 14.6). This O(1) counter-based check
prevents attackers from weaponizing DA challenges to exclude specific receipts without requiring iteration
over all sessions. Receipts finalized during the grace period are included in W_total_epoch[e] and
SU_eligible_epoch[e] normally. FINALIZATION_GRACE is a deployment parameter (recommended: 2
epochs).

On success, it computes utilization and emissions from Part 2:

o scheduled emission E_sched(e) (Section 7.3 (Part 2); integer base units, uint256)
« pool emissions (two cases to avoid premature truncation):

if SU_eligible_epoch[e] >= SU_target:
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// Full utilization: u_total = 1.0, no rounding needed
E_ghost(e) = floor(E_sched(e) * beta_bps / 10_000)
E_shell(e) = floor(E_sched(e) * alpha_bps / 10_000)
else:
// Partial utilization: single mulDiv avoids premature (64.64 truncation
// den = 10_000 * SU_target (precomputable, fits in uint256)
E_ghost(e) = mulDiv(E_sched(e) * beta_bps, SU_eligible_epochl[e], 10_000 * SU_target)
E_shell(e) = mulDiv(E_sched(e) * alpha_bps, SU_eligible_epoch[e], 10_000 * SU_target)

Where mulDiv(a, b, d) = floor(a * b / d) using 512-bit-safe arithmetic (e.g., OpenZeppelin
Math.mulDiv). This avoids the rounding error that would result from first computing u_total_q =
floor(SU_eligible * Q / SU_target) and then multiplying — the Q64.64 truncation of u_total loses
up to 1 ULP (unit in last place), which when multiplied by E_sched (up to ~27192 base units) can amplify
to a deviation of up to E_sched / Q (up to ~27128 base units). The single mulDiv path avoids this
amplification entirely.

For observability, implementations SHOULD also compute and emit u_total_q = min(Q, SU_eligible_epochl[el
* Q / SU_target) in the EpochFinalized event, but this value MUST NOT be used as the source of truth
for mint amounts.

Then define fixed reward rates for the epoch:

e rate_ghost(e) = E_ghost(e) / W_total_epochl[e]
e rate_shell(e) E_shell(e) / W_total_epochl[e]

“Fixed reward rates” means that within an epoch, every eligible receipt is paid by multiplying its stored
weight by the same pool rate. The rate does not depend on claim order.

If W_total_epoch[e] = 0, then u_total = 0 and both pool emissions are zero.

Minting model (normative): finalizeEpoch(e) MUST mint R_net = E_ghost(e) + E_shell(e)
to the RewardsManager contract via IGIT.mint (address(this), R_net). Individual claimReceiptRewards
calls then transfer from the RewardsManager balance to recipients. This is mint-to-pool-then-transfer,
not mint-at-claim-time. The pool amount is the post-sink R_net; the withheld amount R_withheld is
never minted (Section 10.6, “Sink as mint reduction”). Truncation dust and expired claims remain as
RewardsManager token balance (see Section 10.7, forfeited rewards accounting).

Implementations SHOULD:

o store rate_ghost(e) and rate_shell(e) as fixed-point values,
e mark epoch e finalized exactly once, and
o reject claims for non-finalized epochs.

Fixed-point arithmetic (normative) This section specifies deterministic arithmetic for on-chain
reward computation. Fixed-point is used only for dimensionless ratios (utilization, weight multipliers,
decay factors). Token amounts are stored and computed in 256-bit integer form (ERC-20 base units).

Fixed-point representation — type rules:

Define Q = 2764. All Q64.64 values represent unsigned fixed-point numbers where the integer part
occupies the upper bits and the fractional part occupies the lower 64 bits.

Q64.64 type categories:

o Bounded dimensionless ratios (u_total_q, w_passport_q, w_dwell_qg, decay_q, s_q, r_q):
Q64.64 stored as uint128. These are bounded by construction — decay_q and u_total_q are in [0,
Q], w_passport_q isin [Q, 2*Q], w_dwell_qisin [2, Q]. Maximum representable value in uint128:
27128 - 1 ( 1.8 x 10719 as a real number).

o Per-receipt weight (weight_q): Q64.64 stored as uint256. Although per-receipt weight is bounded
(e.g.,65_535 * 2.0 * 1.0 = 131_070.0 in real terms), using uint256 aligns with the Part 2 interface
(uint256 weight_q) and avoids unnecessary casts.
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o Aggregates (W_total_epoch[e], SU_eligible_epoch[el): uint256. The sum of many per-receipt
weights or SU values can exceed uint128.

e Scaled rates (rate_ghost_q, rate_shell_q): Q64.64 stored as uint256. These are computed as
token_amount * Q / aggregate and require the wider type.

e Intermediate products: When multiplying two Q64.64 values, the intermediate product requires up
to 256 bits. Implementations MUST use uint256 for intermediate products and divide by Q (equiva-
lently right-shift by 64) to obtain the Q64.64 result.

Canonical helper (normative): Define mulQ64(a, b) = floor(uint256(a) * uint256(b) / Q).
The division truncates toward zero per the rounding rule below. Precondition: a * b MUST fit in uint256
(i.e., a * b < 27256). This is satisfied for all uses in weight computation (where both operands are at most
~131_070 * Q@ 2781, so the product is at most ~27162). For products where this precondition may not
hold (specifically rate_x_q * weight_q at claim time, where both operands are uint256), implementations
MUST use mulDiv(a, b, Q) with 512-bit-safe arithmetic instead of mulQ64.

Library compatibility note: The widely-deployed ABDKMath64x64 library uses int128
(signed) for its 64.64 type. GITS uses unsigned arithmetic exclusively. Implementations MAY
adapt ABDK routines by restricting inputs to non-negative values and casting results, but MUST
NOT rely on signed behavior. Implementations MAY alternatively use a custom unsigned Q64.64
library. The exp_2 function referenced below MUST accept uint128 input and produce uint128
output; its specification follows.

Rounding rule: All fixed-point divisions MUST round toward zero (truncation). This ensures deter-
ministic results across implementations and matches EVM integer division semantics.

Token amounts (256-bit integers):

Emission schedule parameters (E_0, E_tail) and computed emissions are stored and manipulated as
uint256 values in ERC-20 base units (18 decimals for GIT). They MUST NOT be converted to 64.64
fixed-point, as typical emission values exceed the representable range.

Emission schedule computation (integer-safe):

The decay factor 2°{-e/H} is computed directly (without computing the positive exponent 2~{e/H}
which can overflow):

// exponent_q is (Q64.64 representation of e/H (uint128, always non-negative)
uint128 exponent_q = uint128(uint256(e) * Q / H);

// decay_q is Q64.64 representation of 27{-e/H}, computed directly
// neg_exp_2_64x64(x_q) returns floor(Q * 2°{-x}) where x = x_q / Q
// For x_q = 0: returns Q (= 1.0). For large x_q: approaches O.

// Input range: [0, 63 * Q]. For x_q >= 64 * Q, MUST return O.
uint128 decay_q = neg_exp_2_64x64(exponent_q);

// E_sched in base units (uint256)
uint256 E_sched = uint256(E_0) * uint256(decay_q) / Q + E_tail;

neg_exp_2_64x64 specification (normative):

neg_exp_2_64x64(x_q: uint128) -> uint128 computes floor(Q * 27{-(x_q / @}) (the Q64.64
representation of 27{-x} where x = x_q / Q).

o Input range: x_q in [0, 64 * Q). For x_q >= 64 * Q, the result is 0 (decay below representable
minimum).

e Output range: [0, Q] (corresponding to real values [0, 1.0]).

e Precision: MUST match the canonical test vectors below to within +1 ULP.

o Implementation strategies: (a) compute 2"{integer_part} via right-shift and 2"{fractional_part}
via polynomial/table approximation, then combine; (b) use an existing library’s exp_2 with signed
wrapper and invert; (c) implement the iterative halving algorithm. The choice is left to implementations
provided the output matches the precision requirement.
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This avoids the 2~ {+e/H} overflow problem: the positive exponent 2~ {e/H} can exceed uint128 Q64.64
range when e/H >= 64, but the negative exponent 2" {-e/H} is always in [0, 1.0] and fits in uint128.

Where: -Q = 2764 - E_0 and E_tail are uint256 in base units (e.g., 1_000_000 * 10718 for 1M GIT) -
exponent_q and decay_q are uint128 in Q64.64 format - decay_q is always in range [0, Q] for non-negative
epochs

Overflow analysis (complete):

1. E_0 * decay_q <= E_O * Q. This fits in uint256 for any E_0 < 27192. Deployment constraint:
E_O0 + E_tail < 27192 (in base units).

2. E_sched = (E_O * decay_q) / Q + E_tail <= E_0 + E_tail < 27192 for all epochs. The +
E_tail cannot overflow because both operands are < 27192.

3. E_pool * Q (in rate computation): E_pool <= E_sched < 27192, so E_pool * Q < 27256. Fits in
uint256.

4. rate_*_q * weight_q (at claim time): both are uint256, so the product requires 512 bits. Imple-
mentations MUST use mulDiv(rate_q, weight_q, Q) (a 512-bit-safe floor division) or equivalent.
Standard EVM libraries (e.g., OpenZeppelin Math.mulDiv) provide this.

5. beta_bps * E_sched(e): beta_bps <= 10_000 and E_sched < 27192, so the product is < 272086.
Fits in uint256.

Basis-point computations (normative, global rule): All basis-point payouts of the form floor (X
* bps / 10_000) where X is a uint256 amount MUST use mulDiv(X, bps, 10_000) (512-bit-safe floor
division) to prevent overflow when X > type(uint256).max / 10_000. This applies to: spend_cap =
mulDiv(ERO, bps_recovery_spend_cap, 10_000), bounty_initiator = mulDiv(B_rescue_total,
bps_initiator, 10_000), challenger_reward = mulDiv(B_receipt, bps_challenger_reward,
10_000), and all similar computations. For remainder computations (e.g., burn amount after chal-
lenger reward), implementations MUST use subtraction from the whole (remainder = X - payout)
rather than a separate mulDiv(X, 10_000 - bps, 10_000) to guarantee exact conservation (payout +
remainder == X).

Conformance test vectors:
Parameters: E_O = 1_000_000 * 10718, H = 1460, E_tail = 10_000 * 10718

Epoch decay_q (64.64 hex) E_sched (base units) Human-readable
0 0x10000000000000000 (= 1.0) 1.010_000 * 10718 1,010,000 GIT
1460 0x8000000000000000 (= 0.5) 510_000 * 10718 510,000 GIT
2920 0x4000000000000000 (= 0.25) 260_000 * 10718 260,000 GIT

End-to-end reward test vector:

Parameters: E_0 = 1_000_000 * 10°18, H = 1460, E_tail = 10_000 * 10°18, e = 0, alpha_bps
= 5000, beta_bps = 5000, SU = 144, SU_target = 2_880_000, passport_bonus = true (assume
B_passport = 1.0), ¢ = 1 (first epoch of residency), D = 30.

Derivation (integer-safe, using the mulDiv path since SU < SU_target): * E_sched(0) = 1_010_000 *
10~18 *E_ghost (0) = mulDiv(E_sched(0) * 5000, 144, 10_000 * 2_880_000) = mulDiv(5_050_000_000
* 10~18, 144, 28_800_000_000) = floor (727_200_000_000 * 10~18 / 28_800_000_000) = 25_250_000_000_000_000_
(exactly 25.25 GIT) * E_shell(0) = E_ghost(0) = 25_250_000_000_000_000_000 * Weight: su_q
= 144 << 64, w_passport_q = 2 * Q, w_dwell_q = Q (k = min(floor(0/30), 63) = 0) step2 =
mulQ64(su_q, 2*%Q) = 144 * 2 x Q = 288 * Q (exact, no truncation) weight_q = mulQ64(288 *
Q, Q) = 288 * Q (exact, no truncation) * W_total_epoch = 288 * Q (single receipt) * rate_ghost_q =
floor (E_ghost * Q / (288 * Q)) = floor(E_ghost / 288) = floor(25_250_000_000_000_000_000
/ 288) = 87_673_611_111_111_111 (truncated) * R_ghost = mulDiv(rate_ghost_q, weight_q, Q) =
mulDiv(87_673_611_111_111 111, 288 * Q, Q) =87_673_611_111_111 111 * 288 =25_249 999 999 999 999 968

Note: With a single receipt, the actual payout is 25_249_999_999_999_999_968 base units — 32 wei less
than the pool emission 25_250_000_000_000_000_000. This dust is a consequence of fixed-point truncation
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at the rate computation step and is expected. The “lost” dust accumulates in the RewardsManager contract.
Conformance implementations MUST reproduce this exact value for this test vector.

Dust policy (normative): Truncation dust that accumulates in RewardsManager (the difference be-
tween pool emissions and actual payouts) MUST remain in the contract and is NOT withdrawable by any
party. There is no sweep function. The dust is an implicit, permanent withholding — economically negligible
per epoch but guaranteed non-exploitable. Implementations MUST NOT roll dust into subsequent epoch
pools (doing so would make pool sizes non-deterministic across implementations).

Weight computation (64.64, normative):

The receipt weight W(r) = SU(r) * w_passport * w_dwell is computed in Q64.64 fixed-point using
the mulQ64 helper:

// Step 1: convert SU to (Q64.64
uint256 su_q = uint256(SU) << 64; // SU * Q, exact (no rounding)

// Step 2: multiply by passport bonus

// w_passport_q: uint128, Q (1.0) or Q + B_passport_q (1.0 + B_passport)
uint256 step2 = mulQ64(su_q, uint256(w_passport_q));

// = floor(su_q * w_passport_q / Q), intermediate uses uint256

// Step 3: multiply by dwell decay
// w_dwell_q: uint128, = Q >> k where k = min(floor((c-1)/D), 63)
uint256 weight_q = mulQ64(step2, uint256(w_dwell_q));
// = floor(step2 * w_dwell_q / Q), intermediate uses uint256
Where mulQ64(a, b) = floor(uint256(a) * uint256(b) / Q) (the canonical helper defined above).
Component bounds: - SU(r) is uint32 (at most N <= 65_535) - w_passport_q is Q (1.0) or Q +
B_passport_q (at most 2 * Q for B_passport = 1.0), stored as uint128 - w_dwell_q = Q >> k where
k = min(floor((c-1)/D), 63). The exponent is capped at 63 to ensure w_dwell_q >= 2 (always posi-
tive). Stored as uint128. - weight_q is stored as uint256 (matching Part 2 interface). The per-receipt
maximum is 65_535 * 2.0 * 1.0 = 131_070.0 in real terms, which fits comfortably.

Truncation occurs twice (once per mulQ64 call). This is normative — all implementations MUST apply

truncation at each step to produce identical weight_q values.

e recordReceipt MUST verify: if SU_delivered > O then weight_q >= MIN_WEIGHT_Q. If violated,
revert.

Scaled rates (fixed-point):

Reward rates are computed and stored as Q64.64 scaled values (uint256):

floor(E_ghost_base_units * Q / W_total_epoch_q)
floor(E_shell_base_units * Q / W_total_epoch_q)

e rate_ghost_q
e rate_shell_q

Both E_x and W_total_epoch_q are uint256. The product E_* * Q fits in uint256 because E_* <
27192 (overflow analysis item 3 above).

At claim time: R_ghost = mulDiv(rate_ghost_q, weight_q, Q) using 512-bit-safe floor division, since
rate_ghost_q * weight_q can exceed uint256. Similarly for R_shell.

Claiming claimReceiptRewards(receipt_id):

1. loads (epoch, weight_q, shell_reward_eligible, claimed) for the receipt,

2. rejects if claimed = true or if epoch epoch is not finalized,

3. if shell_reward_eligible = false, sets R_ghost = R_shell = 0 (ineligible receipts earn zero emis-
sions; the receipt may still have settled rent via escrow) and skips to step 5,

4. computes gross rewards using 512-bit-safe floor division (since rate_*_q * weight_gq can exceed
uint256):
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e R_ghost
e R_shell

mulDiv(rate_ghost_qlepoch], weight_q, Q)
mulDiv(rate_shell_qg[epoch], weight_q, Q)

5. applies any configured sinks (for example adaptive burn, Section 7.9.1 (Part 2); see integer-safe com-
putation below),

6. looks up current recipients: Ghost rewards are sent to the Ghost’s registered wallet address (from
GhostRegistry); Shell rewards are sent to the Shell’s current payout_address (from ShellRegistry).
Recipient lookup is at claim time, not at recordReceipt time. This means a Shell that updates
its payout address between service and claim will receive rewards at the new address.

7. transfers the resulting rewards and marks claimed = true.

Effective weight gating: The shell_reward_eligible flag is stored per receipt at recordReceipt
time. When shell_reward_eligible = false, the receipt’s weight was not accumulated into
W_total_epoch[e]l, so applying the rate formula would overpay relative to the pool. The claim
path MUST therefore gate on this flag to ensure pool conservation: sum_r(R_ghost(r)) <= E_ghost(e)
and sum_r (R_shell(r)) <= E_shell(e) for all eligible receipts.

Adaptive sink: integer-safe computation (normative) At claim time, the adaptive burn (Section
7.9.1 (Part 2)) is applied as follows. All intermediate values are Q64.64 unless noted:

// Emission decay factor s(e) in Q64.64:
// s(e) = clamp01(1 - E_sched(e) / E_sched(0))
s_.q = Q - min(Q, E_sched(e) * Q / E_sched(0))

// Utilization ramp r(u) in Q64.64:
// r(u) = clampO1((u_total - u_sink_start) / (u_sink_full - u_sink_start))
// where u_sink_start and u_sink_full are stored as (Q64.64
if u_total_q <= u_sink_start_q:
rq=20
else:
r_q = min(Q, (u_total_q - u_sink_start_q) * Q / (u_sink_full_q - u_sink_start_q))

// Adaptive sink in basis points (uint256):

bps_sink = bps_sink max * s_.q / Q * r_q / Q

// Equivalently: bps_sink = floor(floor(bps_sink max * s_.q / Q) * r_q / Q)
// Two-step division avoids uint256 overflow from triple multiplication.

// Apply to gross reward (uint256 base units):

R_withheld = floor(R_gross * bps_sink / 10_000)

R_net = R_gross - R_withheld

// RewardsManager mints ONLY R_net. R_withheld is never created.

Sink as mint reduction (normative): The adaptive sink is implemented as a mint reduction, not as
a mint-then-burn. RewardsManager computes R_withheld and mints only R_net = R_gross - R_withheld.
The withheld amount is never minted, so totalSupply reflects actual circulating supply at all times. This
avoids dependence on ERC-20 burn semantics (many implementations revert on transfer (address(0)) or
do not reduce totalSupply).

The two-step division for bps_sink is the canonical form. Note: with bps_sink_max <= 10_000 and
s_q, r_q <= Q, the single product bps_sink_max * s_q * r_q <= 10_000 * Q72 < 27142 and does not
actually overflow uint256. The two-step form is still preferred for clarity and to match the normative
rounding rule (two truncations, not one), ensuring deterministic results across implementations.

10.7 Practical gas and feasibility notes

GITS is intentionally optimistic: the chain is a dispute court, not the primary execution environment. Still,
several operations have nontrivial on-chain cost.

Implementation notes:
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¢ Receipt fraud proofs are logarithmic: the Merkle-sum proof depth is log2 (N_PAD). For example,
with N_PAD = 256 the proof depth is 8, so a single fraud proof carries 8 sibling nodes (hash + sum)
plus one leaf.

o Receipt-DA gas feasibility (normative): publishReceiptLog writes N_PAD leaf entries on-chain
and the contract recomputes (log_root', SU_root') from the published data. This is O(N_PAD)
hashing work (all leaves plus N_PAD - 1 internal nodes), plus calldata costs for the bitmap and signa-
ture pairs. Deployments MUST set N_PAD <= N_PAD_MAX_EVM where N_PAD_MAX_EVM is the maximum
N_PAD for which publishReceiptLog stays within the target chain’s block gas limit. N_PAD_MAX_EVM is
a deployment constant (see parameter table). Exceeding it makes DA challenges infeasible; the protocol
cannot function if DA publication is too expensive to fit in a block. EVM calldata sizing (norma-
tive): For EVM deployments, the worst-case calldata size for publishReceiptLog is approximately
ceil(N_PAD / 8) bytes (bitmap) + N_PAD * (sig_ghost_len + sig_shell_len) bytes (signatures).
With K1 signatures (65 bytes each) and N_PAD = 2048, this is ~256 + 266,240 266 KB of calldata,
which at 16 gas/byte is ~4.3M gas for calldata alone, plus ~2048 * ~600 = ~1.2M gas for hashing. Total
~5.5M gas fits in a 30M gas block. For N_PAD = 4096 or larger, the gas cost doubles and approaches
block limits. The recommended N_PAD_MAX_EVM = 2048 provides a 5x safety margin on most EVM
chains. Deployments requiring N > 2048 intervals per epoch MUST use alternative DA verification
(e.g., blob DA with a succinct verification path) rather than increasing N_PAD_MAX_EVM.

o Signature verification dominates (normative): K1 (ecrecover) costs ~3,000 gas per verification.
R1 (P256VERIFY at 0x100) costs ~3,450 gas where the precompile exists [14][15], but a Solidity-only
P-256 verifier costs 200k—500k gas per call — making receipt fraud proofs (which verify up to N_PAD
signatures) infeasible. Therefore: R1 MUST only be included in SUPPORTED_SIG_ALGS when the target
chain provides a native or precompiled P-256 verifier with gas cost 10k per call. This is enforced at
deployment (see constraint above). Deployments on chains without a P-256 precompile MUST restrict
SUPPORTED_SIG_ALGS to K1 only.

e Verifier certificate checks must stay bounded: if certificate validity requires verifying k verifier
signatures, keep k small (or use an aggregated threshold signature scheme) so ShellRegistry and
recovery paths remain affordable.

e Recovery is rare by design: recovery paths can be more expensive than normal operations, but they
SHOULD remain feasible on the target chain. Rate limits and bonds (Section 12.4) keep worst-case
load bounded.

Reward state growth and pruning (normative): Per-epoch reward accounting grows linearly.
W_claim (deployment parameter, see parameter table) defines the expiry window after which unclaimed
rewards are forfeited and storage is prunable.

Expiry rules: * claimReceiptRewards(receipt_id) MUST revert if current_epoch > receipt_epoch
+ W_claim. * Per-receipt metadata (epoch, weight_q, shell_reward_eligible, claimed) is prunable
after the receipt’s epoch exceeds W_claim. * Per-epoch aggregates (rate_ghost_qlel, rate_shell_qlel,
W_total_epoch[e], SU_eligible_epoch[e], finalized[e]l) are prunable after current_epoch > e +
W_claim.

Pruning mechanism: Implementations SHOULD expose permissionless pruneEpoch(epoch) and
pruneReceipt(receipt_id) functions callable by anyone after the expiry window. These functions zero
the associated storage slots to reclaim gas refunds. Implementations MAY also use lazy deletion: when any
claim or recordReceipt touches an epoch older than W_claim, it MAY zero the associated storage slots
opportunistically.

Forfeited rewards accounting (normative): Two distinct mechanisms produce unredeemed tokens:

o Truncation dust (from fixed-point rounding at finalizeEpoch): Pool emissions are minted to
RewardsManager at finalization time. The sum of individual claim payouts may be less than the minted
pool amount due to floor () truncation. This dust remains as token balance in RewardsManager and
is non-withdrawable (Section 10.6, dust policy).

o Expired claims (from unclaimed receipts past W_claim): The tokens for these receipts were already
minted (as part of the epoch pool) but are never transferred out. They also remain as token balance
in RewardsManager and are effectively burned (not redistributable).
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Both mechanisms result in tokens held by RewardsManager with no withdrawal path. This is con-
sistent with the mint-reduction model: the adaptive sink (Section 10.6) reduces the amount minted at
finalizeEpoch, while dust and expirations are residuals of amounts that were minted but never claimed.

Practical recommendation: deploy the full feature set on an 1.2/L.3 with cheap calldata and the needed
precompiles, and keep the L1 footprint minimal.

11. Off-chain protocol specification

11.1 Heartbeats and logs
GITS meters service in fixed-length intervals.

Schedule (parameterized):

e EPOCH_LEN is the epoch length.

e Delta is the service interval length (heartbeat cadence).

o N = EPOCH_LEN / Delta is the number of intervals per epoch (MUST be an integer).
e interval indices: i in {0, 1, ..., N-1}.

To avoid clock drift and timestamp ambiguity, interval validity is defined by interval index, not by
local wall-clock timestamps. Parties derive the current (epoch, i) from chain time (latest observed block
timestamp) and co-sign the same index.

11.1.1 Heartbeat message All tag-hash computations in Part 3 use the canonical rule from Part 1
Section 4.5.3: H("TAG" || args) means keccak256(abi.encode(TAG_HASH, args)) where TAG_HASH =
keccak256 (bytes ("TAG")).

For each interval i, define the canonical heartbeat digest:
HB = H("GITS_HEARTBEAT" || chain_id || session_id || epoch || i)
Signatures:

o sig_ghost = Sign(session_sk, HB)
e sig_shell = Sign(shell_session_sk, HB)

The corresponding public keys and signature algorithms (ghost_session_key, shell_session_key)
are recorded in SessionManager at SessionOpen.

11.1.2 Interval records An interval record leaf contains:

e session_id

e epoch

e interval_index = i
o sig_ghost (or empty)
o sig_shell (or empty)

An interval is billable if and only if both signatures are present and verify against the session public keys
for the same HB.

11.1.3 Logs and practical anti-griefing rules Records are appended off-chain into a fixed-size array of
N leaves for the epoch and committed as a Merkle root in the on-chain receipt (Section 10.5).

To prevent signature-withholding griefing:

e A Shell SHOULD gate continued service on receiving the Ghost’s heartbeat signature for the next

interval.
e A Ghost SHOULD treat missing Shell co-signatures as non-delivery and begin an exit plan (close at
epoch end, or migrate if possible).

These are off-chain runtime rules. The on-chain consequence is simple: unsigned intervals are not billable.
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11.2 Transport and attested channels
Large artifacts (migration bundles, checkpoint ciphertexts, and recovery envelopes) are transported off-chain.

Normative integrity rule:

e Any off-chain artifact that affects on-chain behavior MUST be content-addressed by a keccak256
hash that is either (a) committed on-chain, or (b) included in a signed artifact whose hash is committed
on-chain.

e Peers MUST reject artifacts whose computed hash does not match the committed hash.

Confidentiality rule by tier:

e On Standard hosts, transport confidentiality protects against network observers but not against the
Shell operator. Assume the host can observe plaintext.

e On Confidential hosts, attested channels are used to reduce host visibility and to make key shielding
plausible.

11.2.1 Attested TLS binding (reference pattern) For interactive transports (live migration, share
collection, and any channel that carries secrets), implementations SHOULD use TLS that is bound to the
attested runtime.

A reference pattern:

1. The sender generates an ephemeral TLS keypair (or an ephemeral signing key used to authenticate the
TLS key).

2. The sender includes H(pk_t1ls) (or H(pk_sign) that authenticates pk_tls) in the attestation report

data.

The receiver verifies the attestation evidence and pins the TLS session to the attested key commitment.

4. The receiver enforces freshness (nonce or timestamp inside the attested report data, plus an expiry
window).

&

This prevents a network attacker from man-in-the-middling the channel without also forging attestation
evidence.

11.2.2 Replay protection and transcript commitments Interactive messages SHOULD include:

e (chain_id, ghost_id, session_id, epoch) context fields, and
e a per-session monotonic counter or nonce.

Where feasible, messages SHOULD be signed by the relevant session key (SK_g or SK_s) and the receiver
SHOULD maintain a replay cache per (session_id, epoch).

For migration, a Migration Manifest SHOULD commit to:

o bundle_hash (hash of the serialized migration bundle),

o checkpoint_commitment (if a checkpoint is embedded),

e dest_shell_id, and
o a manifest signature by the Ghost Identity Key.

This makes migration artifacts independently verifiable even when transported through untrusted relays.
11.3 Indexers

Offer indexers are permissionless processes that:

 ingest signed offers
« validate signatures and Shell registration (including bond status)
e rank by price, reliability, and policy compatibility

Because common ownership and infrastructure concentration are not reliably detectable on-chain, in-
dexers SHOULD also rank and annotate offers using decentralization-relevant signals that are observable
off-chain, such as:
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o Shell age and bond tier (hosting-only vs reward-eligible)
o diversity hints (independent ASNs, geographic spread, and long-lived Shell identities)
 concentration warnings (for example, when results are dominated by a single provider or region)

GITS assumes multiple independent indexers. If indexers are censored, Ghosts can fall back to their
allowedShells set, homeShell, or Safe Haven recovery (Section 13.2).

11.4 Off-chain artifact formats (canonical JSON)
Off-chain artifacts MUST be unambiguous to sign and verify. The reference encoding is:

o Canonical JSON (RFC 8785, JSON Canonicalization Scheme) encoded as UTF-8 [16], and
e signature over H(canonical_bytes) with a domain-separated tag.

A practical signing wrapper for any artifact A:

e payload_bytes = CanonicalJSON(A_without_sig) — the canonical JSON encoding (RFC 8785) of
the artifact with the sig field removed.

e payload_hash = keccak256(payload_bytes)

e artifact_type_hash = keccak256(bytes(artifact_type)) — converts the variable-length artifact
type string to a fixed-width bytes32.

o digest = keccak256(abi.encode(keccak256(bytes("GITS_ARTIFACT")), chain_id, artifact_type_hash,
payload_hash))

o sig = Sign(key, digest)

Where artifact_type is an ASCII string constant (for example "OFFER", "CAPABILITY_STATEMENT",
"MIGRATION_MANIFEST"). Each artifact type MUST use a distinct string. This follows the paper’s stan-
dard digest convention (Section 4.5.3 (Part 1)): abi.encode with fixed-width types, domain separation via
keccak256 (bytes ("TAG")), and no packed encodings. Offers use the EIP-712 scheme from Section 13.1
instead of this wrapper; this wrapper applies to Capability Statements, Migration Manifests, and any future
off-chain artifact types.

11.4.1 Capability Statement (Shell -> world) Capability Statements are used for discovery and for
off-chain policy checks. They are signed by the Shell’s Offer Signing Key.

Minimum fields:

e schema: "gits.capability.v1"

e shell id

o offer_signer_pubkey (and sig_alg)

o assurance_tier_claimed and (if AT >= AT1) attestation metadata pointers:

— measurement_hash

— tcb_min

— attestation_cert_hash (hash of the current on-chain certificate record)
e endpoints (transport endpoints)
e expires_at_epoch
e sig

11.4.2 Offer (Shell -> market) The canonical Offer struct and signing scheme is defined in Section
13.1. This section does not define additional offer fields or signing rules. All offer signing and verification
MUST follow the EIP-712 typed-data scheme in Section 13.1.

Capability binding (normative): The capability_hash field in the Offer struct (Section 13.1)
is keccak256(CanonicalJSON(CS_without_sig)) — the hash of the Capability Statement’s canonical
JSON encoding with the sig field removed (Section 11.4.1, Section 11.4). Clients MUST verify
capability_hash matches the Shell’s current on-chain anchored capability hash in ShellRegistry. This
binds the offer to a specific capability snapshot and prevents bait-and-switch (Section 5.1 (Part 1)).
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11.4.3 Migration Manifest (Ghost -> dest Shell / relays) A Migration Manifest binds a migration
bundle to an intended destination.

Minimum fields:

e schema: "gits.migration_manifest.vl"

e ghost_id

e from_shell_id and to_shell_id

o session_id_from (optional) and session_id_to (optional)
e bundle_hash

o checkpoint_commitment (optional)

o sig (by the Ghost Identity Key)

11.5 Indexer threat model and client hardening

Indexers are not trusted and may be malicious or censored.

Threats:

e Eclipse: an indexer shows only attacker-controlled offers to trap a Ghost.

o Equivocation: an indexer returns different views to different clients.

» Staleness: an indexer serves expired offers or offers from unbonded / unregistered Shells.
e Sybil flooding: an attacker creates many Shell identities to dominate rankings.

Client hardening recommendations:

e Query multiple independent indexers and merge results. Clients SHOULD treat “only one indexer
available” as a risk signal.

o Verify signatures on Offers and Capability Statements and verify the Shell’s on-chain registration, bond
status, and certificate freshness.

o Enforce local policy: destination allowlists, minimum Shell age/bond, and tier requirements.

o Prefer diverse results (operators, ASNs, regions) when safety matters, and surface concentration warn-
ings to the Ghost.

e Maintain a local cache of recently-seen Shell identities and treat sudden appearance of many new Shells
as suspicious unless bonded and aged.

These defenses are complementary to on-chain safety mechanisms (leases, tenure caps, trust-refresh, and
recovery).

12. Liveness, revival, and Safe Havens

12.1 Checkpoints
Each epoch, the Ghost produces an encrypted checkpoint that is sufficient to restart after host loss.

Checkpoint plaintext SHOULD include:

o agent state and configuration (including Wallet Guard state)
o references to external blobs (for example a memory manifest)
o excludes secrets that should not persist (for example ephemeral session keys)

12.1.1 Portable checkpoint encryption (no host-sealed keys) Checkpoint encryption MUST be
recoverable off-host. It MUST NOT depend on a machine-sealed key tied to the current host.

For each checkpoint, the Ghost generates a fresh random data-encryption key K_ckpt and computes:
e C = AEAD_Encrypt (K_ckpt, checkpoint_plaintext, aad=(ghost_id, epoch, checkpoint_version))

The Ghost then constructs a Recovery Envelope that allows t-of-n Safe Havens to reconstruct K_ckpt
inside a recovered confidential VM.
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Ghost. Current Shell Chain Safe Haven Shell A Safe Haven Shell B

Produce encrypted checkpoint C

L

Publish checkpoint commitment + envelope metadata

hd

Host failure or captivity

startRecovery (or delegate triggers it)

A\ J

Authorize recovery session

>

Authorize recovery session

v

Submit encrypted share receipt

A

Submit encrypted share receipt

Recovery conditions satisfied

Rehydrate from latest checkpoint

A

Ghost Current Shell Chain Safe Haven Shell A Safe Haven Shell B

Recovery flow: checkpoint and resurrection

Let the configured Recovery Set be RS = [shell_id_1 ... shell_id_n] with threshold t. Each Safe
Haven shell_id_j has a registered recovery public key pk_recovery_j in ShellRegistry.

1. Split K_ckpt into n Shamir shares with threshold t:

e (share_1 ... share_n) = SSS_Split(K_ckpt, t, n)

2. Encrypt each share to its Safe Haven:

e E_j = HPKE_Seal(pk_recovery_j, share_j, aad=(ghost_id, epoch, H(C)))

3. Define the Recovery Envelope:

e Env = [EnvEntry_j for j in 1..n], where each entry is a fully specified struct:

struct EnvEntry {
bytes32 shell_id; // Recovery Set member
bytes32 pk_recovery_hash; // keccak256(pk_recovery) for the recipient
bytes  hpke_ciphertext; // encrypted Shamir share

Entries MUST be sorted by shell_id (ascending) and unique. pk_recovery_hash = keccak256(pk_recovery)
where pk_recovery is the Shell’s registered recovery public key.

The Ghost uploads {C, Env} to content-addressed storage (either as a single bundle or as two objects).

On-chain, the Ghost publishes:

e checkpoint_commitment = keccak256(C)

o envelope_commitment = keccak256(abi.encode(keccak256(bytes("GITS_ENV")), abi.encode(Env)))
— canonical envelope commitment with domain separation. abi.encode(Env) encodes entries in
sorted order using the struct field types above.

« one or more storage pointers for C and Env (recommended: at least two independent pointers, Section
12.1.3)

Notes:

39



e Any t Safe Havens can supply enough shares to reconstruct X_ckpt inside a recovered confidential VM,
enabling Safe Haven revival without cooperation from the failed host.

o A single Safe Haven learns only its Shamir share. Reconstruction requires threshold participation.

e On Standard Shells, the host may still observe live memory. Checkpoint encryption primarily protects
against storage leakage and supports portable recovery. Confidentiality of the active runtime is provided
only by Confidential Shells with valid attestation.

Shamir share wire format (normative): Shamir secret sharing MUST use GF(278) with the ir-
reducible polynomial x°8 + x™4 + x"3 + x + 1 (0x11B), consistent with SLIP-39. Each share is a byte
array of the same length as the secret. The share index j (1-indexed, corresponding to Recovery Set posi-
tion) is the GF(278) evaluation point. The wire format for a single share is: share_bytes = [index_byte
|| share_data] where index_byte = uint8(j) and share_data is the evaluated polynomial at point j.
This encoding is compatible with SLIP-39 field arithmetic. Deployments MUST publish the complete share
format (this wire layout, threshold t, and n) as part of the deployment manifest so that independent Safe
Haven implementations can reconstruct secrets interoperably.

Deployment manifest (normative requirements): Each deployment MUST publish a deployment
manifest containing at minimum: (1) chain ID, (2) contract addresses for all protocol contracts, (3) all
deployment-constant parameter values from Section 10.0, (4) the Shamir share format above, (5) the
SUPPORTED_SIG_ALGS set. The manifest MUST be content-addressed (e.g., published to IPFS or similar) and
its hash SHOULD be committed on-chain in a deployment-wide registry or emitted as an event at contract
deployment. The manifest schema and authentication mechanism are deployment-specific and out of scope
for this specification, but the manifest MUST be sufficient for an independent client to locate and verify all
protocol contracts and parameters without trusting a centralized discovery service.

Implementation note: Shamir secret sharing plus HPKE is the simplest portable design. A stronger but
more complex variant is true threshold public-key encryption (no party ever holds a full decryptable share).
A weaker but simpler variant is encrypting K_ckpt independently to each Safe Haven and requiring only one
re-wrap at recovery time.

12.1.2 HomeShell mirroring (optional) A Ghost MAY designate a homeShell at birth as a last-resort
availability anchor (Section 5.5.2 (Part 1)). When enabled, the Ghost SHOULD transmit each checkpoint
bundle {C, Env} (ciphertext 4+ envelope) to the homeShell for redundant storage.

Properties:

e The homeShell learns only ciphertext; it does not gain decryption capability unless it is also in the
Recovery Set.

e HomeShell mirroring is an availability strategy, not a confidentiality claim.

e A Ghost can disable or rotate homeShell at any time. Removing homeShell is tightening and MUST be
immediate; adding a new homeShell is loosening and MUST follow the timelocked Trusted Execution
Context rule (Section 5.5.2 (Part 1)).

This mechanism is optional. It provides a practical “known place to look” for recovery artifacts if public
storage pointers fail, without requiring the homeShell to be a special on-chain authority.

12.1.3 Checkpoint-DA: off-chain or on-chain publication (Ghost-selected) Checkpoint confiden-
tiality is irrelevant if the ciphertext cannot be fetched when needed. GITS therefore treats checkpoint artifact
availability (“Checkpoint-DA”) as an explicit systems problem.

A Ghost MAY choose either publication mode per checkpoint, based on its own risk tolerance and cost
allowance:

Mode A: Off-chain multi-publish (default)

e The Ghost publishes the checkpoint bundle {C, Env} to at least M_publish_min independent storage
backends (for example IPFS + HTTPS object storage + an archival backend).

e The Ghost records at least M_ptr_min retrievable pointers for {C, Env} on-chain (via ptrCheckpoint
and ptrEnvelope) so a recovery agent can locate the bundle even if one backend disappears.
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o The Ghost SHOULD keep at least one copy under Ghost control (or a Ghost-operated key) so avail-
ability does not depend solely on Shell operators.

Mode B: On-chain publication (optional, deployment-specific)
A deployment MAY optionally support publishing an encrypted checkpoint bundle {C, Env} (or a smaller

“escape snapshot”) directly into an on-chain publication channel (for example calldata, blobs, or a chain-
specific data-publication system). In this mode:

e The Ghost publishes the ciphertext bytes on-chain and still anchors integrity with checkpointCommitment
= H(C) and envelopeCommitment = H(Env).

o The Ghost records a canonical on-chain reference in ptrCheckpoint / ptrEnvelope (for example a tx
hash, log index, or blob reference), or leaves off-chain pointers empty if the deployment provides an
unambiguous on-chain locator.

On-chain publication improves robustness against off-chain storage failures, but it is expensive and may
inherit chain-specific retention limits (for example if “blob” data is not permanently retrievable). A practical
policy is hybrid: off-chain every epoch, and on-chain only every k epochs or only for escape context.

Safe Haven checkpoint mirroring (optional, reputational):

e Safe Haven Shells in RS MAY offer a checkpoint mirroring service: “we retain the last K_mirror
checkpoint bundles for ghosts that choose us.”

e This paper assumes no in-protocol slashing for missing off-chain blobs. Mirror performance is enforced
by reputation and by Ghost choice (rotate the Recovery Set).

12.2 Recovery delegation (pre-authorization)
Because a fully isolated Ghost cannot sign, recovery must be pre-authorized.

Each Ghost configures a Recovery Set RS of n Safe Haven shell_ids and a threshold t. The Recovery
Config also commits a protocol-level Rescue Bounty (Section 12.2.1). Each Safe Haven in RS maintains a
registered recovery public key in ShellRegistry that is used to encrypt checkpoint key shares (Section 12.1).

Ghosts SHOULD choose RS to reduce correlated failure: include Safe Havens across different operators
and infrastructure, and avoid concentrating the set in a single cloud provider, ASN, or jurisdiction. The
protocol cannot enforce common ownership on-chain, but indexers and clients can surface diversity signals
for informed selection (Section 11.3).

Recovery actions are limited on-chain by the Ghost smart wallet policy and protocol state:

e SessionManager can enter a RECOVERY mode for a stranded ghost_id after lease expiry.
o In RECOVERY mode, the GhostWallet (smart contract) MUST allow only protocol-defined actions:

— startMigration(...) / finalizeMigration(...) to move the revived Ghost to a normal
session

— paying rent (subject to the emergency price cap) to Safe Haven escrows

— paying the Rescue Bounty via payRescueBounty(...) upon successful recoveryRotate (Section
12.2.1)

e Arbitrary transfers are disabled by the wallet contract in RECOVERY mode.
e RECOVERY mode does not auto-expire. It ends only when the Ghost explicitly calls exitRecovery, and
only from a Trusted Execution Context (Section 5.5.2 (Part 1)).

In RECOVERY mode, policy loosening is disabled: the wallet MUST reject any loosening (including
allowlist expansion) until recovery is exited. Tightening remains allowed.

To reduce “recovery-drain” attacks (repeated emergency sessions to siphon funds), implementations
MUST enforce:

« a per-epoch recovery spend cap (rent + bounty) derived from the enforced escape reserve (see Section
12.6 for the normative accounting rule), and

e a cooldown T_recovery_cooldown that rate-limits starting new recovery attempts for the same
ghost_id (see Section 12.6).
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A Wallet Guard module MAY mirror these restrictions for usability, but the enforcement is the on-chain
wallet policy.

12.2.1 Protocol rescue bounty (always payable from the Ghost) Recovery is a public good for the
Ghost: it requires off-chain work (booting a recovery VM, fetching checkpoint artifacts, decrypting shares,
and coordinating verifier certificates). The protocol therefore defines an explicit protocol-level Rescue
Bounty that is always payable from the Ghost itself when the Ghost is in RECOVERY mode.

At Ghost birth (or whenever the Recovery Config is updated), the Ghost commits:
RescueBounty = (asset_bounty, B_rescue_total, bps_initiator)
Where:

e asset_bounty is an accepted stable asset used for recovery payments.

e B_rescue_total is the maximum bounty budget for a single successful recovery attempt, denominated
in asset_bounty. Clients MAY choose B_rescue_total as a percentage of their stable escape reserve,
but it is stored on-chain as an absolute amount.

o bps_initiator is the share (in basis points) of B_rescue_total paid to the startRecovery initiator.
The remainder is reserved for Safe Haven share contributors.

Deployment note: deployments choose an accepted stable asset_bounty for recovery payments (for
example USDC on Base).

Wallet reservation (enforced):

e The GhostWallet MUST treat B_rescue_total as part of the escapeStable floor via bounty_escrow_remaining
(Section 5.5.4 (Part 1)). Outside RECOVERY, bounty_escrow_remaining = B_rescue_total and
the amount is not spendable for normal operations. During RECOVERY, bounty_escrow_remaining
decreases as payRescueBounty disburses funds, dynamically lowering the floor in lockstep with
payouts.

Payout rule (enforced):
e B_rescue_total is paid only on a successful recoveryRotate for the current recovery attempt.

o Recipients are restricted to:

1. the startRecovery initiator (a Safe Haven Shell), and
2. each Safe Haven in the Ghost’s Recovery Set that is credited as having contributed a valid key
share to the successful attempt.

o All bounty payments are made to each Shell’s payout address recorded in ShellRegistry at the time

of recoveryRotate.

Routing note: SessionManager.recoveryRotate(...) SHOULD compute the recipient set from the
included Share Receipts and trigger the bounty payout by calling GhostWallet.payRescueBounty(...)
internally as part of the same transaction. payRescueBounty is not intended as a separate manual post-step.

Contribution proof (Share Receipts):

Because the protocol cannot directly observe off-chain share delivery, the protocol uses an explicit receipt
format that is acknowledged by the measured recovery runtime.

For a recovery attempt with identifier attempt_id, define:

ShareReceipt_j = (ghost_id, attempt_id, checkpoint_commitment, shell_id_j, sig_shell_j,
sig_ack_j)

Where:

e sig_shell_j = Sign(shell_identity_sk_j, H("GITS_SHARE" || chain_id || ghost_id ||
attempt_id || checkpoint_commitment))

e sig_ack_j = Sign(sk_new, H("GITS_SHARE_ACK" || chain_id || ghost_id || attempt_id ||
checkpoint_commitment || shell_id_j))
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sig_shell_j MUST verify under the Shell Identity Key recorded for shell_id_j in ShellRegistry.

sig_ack_j MUST be produced inside the recovery VM and is valid only if pk_new is bound to the
measured recovery runtime by a valid Recovery Boot Certificate (RBC) included in recoveryRotate (Section
12.3).

On-chain, recoveryRotate MUST:

o verify sig_shell_j and sig_ack_j for each included receipt,

o verify shell_id_j is in the snapshotted Recovery Set for the attempt (caller provides rs_list;
contract verifies keccak256 (abi.encode(rs_list)) == attempt.rs_hash and checks membership
against that list, consistent with the AuthSig membership check),

o treat duplicate shell_id_j receipts as one contribution, and

 cap the number of paid contributors at n (the Recovery Set size).

Splitting (deterministic):

e bounty_initiator = floor(B_rescue_total * bps_initiator / 10_000) is paid to the initiator.

e The remaining bounty_contrib = B_rescue_total - bounty_initiator is split equally across the
unique contributor set C derived from the Share Receipts.

e Any remainder (integer division dust or unused budget if fewer contributors are credited) remains in
the GhostWallet escape reserve.

This Rescue Bounty ensures there is always a protocol-defined reason to perform recovery work, without
introducing any central protocol treasury.

Client sizing guidance (non-normative):

o B_rescue_total should cover: (i) the on-chain gas paid up-front by the initiator to run startRecovery
and recoveryRotate, (ii) emergency-priced recovery rent at the cap for enough time to complete
decryption and coordination, and (iii) a meaningful incentive for t share contributors.

e bps_initiator should be large enough that a Safe Haven is willing to initiate recovery (which requires
the most up-front work and liveness risk), while leaving enough budget to reward share contributors.

Because these costs are chain- and market-dependent, this paper intentionally does not propose concrete
numeric defaults. Deployments should publish a parameter manifest (Section 7.7 (Part 2)) and re-run the
numerical examples in Section 8 (Part 2) under current economics.

12.3 Recovery flow
Trigger: lease_expired or tenure_expired for R epochs.

Recovery has two goals:

1. decrypt the most recent checkpoint without the failed host, and
2. rotate on-chain control to a key that is verifiably generated inside the measured recovery runtime.

Flow:

1. Any Safe Haven Shell in the Ghost’s Recovery Set with an active Safe Haven bond MAY submit
startRecovery(ghost_id) with bond B_start posted in the chain base asset (asset_start, ETH on
Base). Only RS members can initiate recovery because only they possess the encrypted Shamir shares
needed to reconstruct the checkpoint key.

2. startRecovery creates a new attempt_id = ++attempt_nonce[ghost_id] (a per-ghost mono-
tonic counter, starting at 1), records the initiating Shell, snapshots the current RescueBounty =
(asset_bounty, B_rescue_total, bps_initiator) parameters and the Recovery Set (RS, t)
for this attempt (Section 12.2.1), and identifies the latest published checkpoint for ghost_id.
Checkpoint selection rule: the contract reads the most recently recorded (checkpoint_commitment,
envelope_commitment) from GhostRegistry. If no checkpoint has been published (checkpoint_commitment
== 0), startRecovery MUST revert — there is nothing to recover from. If pointer count is below
M_ptr_min, the contract SHOULD emit a warning event but MUST NOT revert (pointers are
best-effort availability hints, not consensus state).
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3. The initiating Safe Haven fetches the checkpoint ciphertext C and Recovery Envelope Env from the
storage pointers and boots a fresh confidential VM running the measured recovery runtime.

4. Inside the recovered confidential VM:

o generate a fresh identity signer keypair (sk_new, pk_new)

o generate a fresh recovery transport keypair (sk_transport, pk_transport) for collecting shares

e produce a Boot Quote (attested evidence) whose report data commits to (ghost_id,
attempt_id, checkpoint_commitment, pk_new, pk_transport)

5. The initiator submits the Boot Quote to the verifier set. Verifiers validate it and issue a threshold-signed
Recovery Boot Certificate (RBC):
RBC = (ghost_id, attempt_id, checkpoint_commitment, pk_new, pk_transport, measurement_hash,
tcb_min, valid_to, sigs_verifiers[])
RBC signing digest (normative): rbc_digest = keccak256(abi.encode (keccak256 (bytes("GITS_RBC")),
chain_id, sessionManager_address, ghost_id, attempt_id, checkpoint_commitment,
pk_new, pk_transport, measurement_hash, tcb_min, valid_to))
Verifier signature constraints:

o Signatures MUST be from unique verifier identities (sorted by signer address, ascending)

o len(sigs_verifiers) <= K_v_max

e At least K_v_threshold valid signatures required

e block.timestamp <= valid_to (and valid_to - block.timestamp <= TTL_RBC if TTL_RBC is
configured)

o Signatures MUST use K1 (secp256k1) regardless of the Ghost’s own key type

ReceiptManager and wallets do not consume RBCs. recoveryRotate consumes RBCs for recovery
signer rotation and Rescue Bounty payout authorization.

6. Share collection and unwrap:

e Each participating Safe Haven shell_id_j in the Recovery Set decrypts its encrypted Shamir
share E_j (from Env) using its registered recovery private key inside its confidential runtime.

o It re-encrypts the share to pk_transport (or sends it over the attested channel) to the recovered
VM, and it provides sig_shell_j for the Share Receipt format in Section 12.2.1.

e The recovered VM validates the share and emits sig_ack_j for each contributing Safe Haven
(Section 12.2.1).

¢ Once the recovered VM has collected t valid shares, it reconstructs K_ckpt = SSS_Combine (shares)
and decrypts C to obtain the checkpoint plaintext.

7. The recovered VM boots the Ghost from the decrypted checkpoint under the recovery runtime’s wallet
restrictions.

8. recoveryRotate is submitted on-chain. It MUST include:
Implementation note: SessionManager.recoveryRotate(...) MUST perform the signer rotation
internally (by calling GhostRegistry.rotateSigner(...)) as part of the same transaction. Callers
do not invoke rotateSigner separately for recovery.
Atomicity (normative): The entire recoveryRotate call — signer rotation, Rescue Bounty pay-
out via payRescueBounty, B_start refund, and attempt status update — MUST execute atomically.
If any sub-step fails (e.g., payRescueBounty reverts due to insufficient escapeStable), the entire
transaction MUST revert, leaving the on-chain signer unchanged and the attempt in ACTIVE status.
Implementations MUST NOT split these effects across multiple transactions.

o the RBC (verifier threshold signatures) binding pk_new to the measured recovery runtime,

o t-of-n Recovery Set authorization signatures (AuthSig[]). Each Recovery Set member j
signs: auth_digest_j = keccak256(abi.encode(keccak256(bytes("GITS_RECOVER_AUTH")),
chain_id, sessionManager_address, ghost_id, attempt_id, checkpoint_commitment,
pk_new)) AuthSig_j = Sign(shell_identity_sk_j, auth_digest_j) On-chain enforcement:
recoveryRotate MUST verify unique_RS_auth_sigs >= t_required where t_required is
taken from the attempt’s snapshotted Recovery Set (not the current RS configuration). All
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shell_id_j MUST be members of the snapshotted Recovery Set. Signatures MUST be unique
per shell_id. Binding to pk_new prevents authorization reuse across different recovery targets.

Recovery Set membership verification (normative): The recoveryRotate caller MUST
provide the full Recovery Set list rs_list (a bytes32[] of Shell IDs) in calldata. The con-
tract MUST verify keccak256(abi.encode(rs_list)) == attempt.rs_hash before checking
any AuthSig membership. Each AuthSig signer shell_id_j MUST appear in the provided
rs_list. This calldata-and-hash approach avoids storing the full RS list on-chain (only rs_hash
is stored in the attempt struct), while giving the contract a verified snapshot to check membership
against.

the set of ShareReceipt_j objects for contributors that should receive the Rescue Bounty.

On success, the protocol rotates the on-chain identity signer to pk_new and pays the Rescue Bounty
automatically from the GhostWallet to the initiator and credited contributors (Section 12.2.1). B_start
is returned to the initiator upon successful recoveryRotate.

9. The Ghost is alive again (mode = RECOVERY) and can migrate normally. Recovery mode restrictions
remain in force until the Ghost migrates to a normal session and explicitly exits RECOVERY.

Security notes:

o Safe Havens cannot rotate control to an arbitrary key without a verifier-threshold RBC that binds the
new key to the measured recovery runtime.

o This

does not eliminate trust. It concentrates it into two explicit components: the verifier quorum and

the configured Recovery Set, both of which are transparent and bondable.

12.3.1 Recovery state machine (two-phase) Recovery proceeds through two phases:

1. RECOVERY__LOCKED: Entered via startRecovery. Wallet restrictions enforced (spending lim-
ited to recovery-permitted methods). Sessions use recovery pricing (P_recovery_cap). The Ghost
MUST complete recoveryRotate to advance.

2. RECOVERY__STABILIZING: Entered after successful recoveryRotate. Wallet restrictions
remain active but the Ghost MAY open NORMAL-priced sessions. The Ghost must maintain a
NORMAL-priced session on a Trusted Execution Context host for E_exit_stabilize consecutive
epochs.

3. NORMAL: Entered via exitRecovery after the stabilization period. All wallet restrictions lifted.

Permitted calls per phase:

Action RECOVERY__LOCKED RECOVERY_STABILIZING NORMAL
openSession (to RS YES (recovery-priced) YES (normal-priced) YES
member)

renewLease YES YES YES
settleEpoch YES YES YES
recoveryRotate YES NO (already rotated) NO
exitRecovery NO YES (if stabilized) N/A
unrestricted NO NO YES
transfers

policy loosening NO NO YES

Exiting recovery The Ghost MAY exit recovery by calling exitRecovery(ghost_id) from its smart
wallet. The wallet/SessionManager MUST enforce that:

Ll e

the Ghost is in RECOVERY_STABILIZING (not RECOVERY_LOCKED), and

the Ghost has an active session in NORMAL pricing mode, and

the active session host satisfies the Trusted Execution Context predicate in Section 5.5.2 (Part 1), and
the Ghost has maintained that NORMAL session for at least E_exit_stabilize epochs, to reduce “flip-
flop”

attacks, and

5. bounty_escrow_remaining == 0 (bounty fully paid or attempt expired/failed).
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If Guardians are configured, an implementation MAY additionally require a Guardian co-signature to
exit recovery (optional hardening).

Note: exitRecovery can be satisfied by a non-AT3 host if it is in trustedShells. This is intentional —
the trustedShells set is itself gated by critical loosening (homeShell or guardian co-signature), so adding
a shell to trustedShells requires higher authorization than routine operations.

If a Ghost cannot satisfy these conditions, it remains in recovery mode. This is safe by construction
because transfers remain disabled and spending is bounded economically (escape reserve, rent caps, and
recovery spend caps).

12.4 Safe Haven requirements
Safe Havens must:

e post a higher bond

e accept capped emergency pricing

e run the latest patched confidential runtime

e maintain a registered recovery public key for decrypting checkpoint shares
o maintain higher uptime targets

Recovery sessions are paid from the Ghost escape reserve, subject to the emergency pricing cap and the
protocol rescue bounty.

12.5 Safe Haven admission, pricing, and enforcement

Safe Havens are a privileged recovery role with stricter, enforceable requirements and stronger incentives.
They are not a single global trust authority; trust is delegated per-Ghost via its configured Recovery Set and
mediated by verifier-quorum certificates. A Safe Haven is expected to be the place a stranded Ghost lands
when things have already gone wrong, so the protocol must reduce price gouging and griefing.

12.5.1 Admission and removal A Shell becomes an active Safe Haven only if it satisfies all of the
following:

e Confidential capability: assuranceTier(shell_id) >= AT3 with a currently valid Attestation Cer-
tificate (Section 2.3 (Part 1)).

e Bond: posts an additional Safe Haven bond B_safehaven_min that can be slashed for on-chain-
provable misconduct (see bond lifecycle below).

e Emergency pricing commitment: opts into the emergency pricing cap enforced by the protocol
(below).

¢ Runtime freshness: runs a runtime measurement hash that is on the current “allowed measurements”
list for Safe Havens.

A Safe Haven is removed (or automatically suspended) if any prerequisite stops holding (bond falls below
minimum, certificate expires, or measurement becomes disallowed).

Safe Haven bond lifecycle (normative):

o Posting: ShellRegistry.bondSafeHaven(shell_id, amount) accepts B_safehaven_min in a hard
asset from BondAssets. The Safe Haven bond is tracked separately from the base Shell bond
(B_host_min). A Shell MUST have an active base bond before posting a Safe Haven bond.

e Unbonding: ShellRegistry.beginUnbondSafeHaven(shell_id) initiates unbonding with delay
U_safehaven (deployment parameter; MAY equal U_shell). During the unbonding period, the Shell
is immediately removed from Safe Haven eligibility (cannot be selected for new Recovery Sets) but
remains slashable for faults that occurred while active.

o Finalization: ShellRegistry.finalizeUnbondSafeHaven(shell_id) releases the bond after
U_safehaven epochs, minus any slashed amount.

e Unbonding blocked while active: beginUnbondSafeHaven MUST revert if the Shell is currently an
initiator on any ACTIVE recovery attempt. The Shell must wait for the attempt to resolve (ROTATED
or EXPIRED) before unbonding.
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Slashable misconduct (on-chain provable only):

Safe Haven bond slashing is limited to events that are objectively verifiable on-chain:

1. Double-signing conflicting recovery authorizations: if a Safe Haven signs recovery authoriza-
tions for two different pk_new values for the same (ghost_id, attempt_id), anyone MAY submit both
signatures to SessionManager.proveSafeHavenEquivocation(shell_id, ghost_id, attempt_id,
checkpoint_commitment, pk_new_a, sig_a, pk_new_b, sig_b). The contract reconstructs both
auth_digest values (using the GITS RECOVER__AUTH digest format from Section 12.3, substi-
tuting pk_new_a and pk_new_b respectively), verifies both signatures against the Shell’s registered
identity key in ShellRegistry, and confirms pk_new_a != pk_new_b. On success, SessionManager
calls ShellRegistry.slashSafeHaven(shell_id, B_safehaven_slash, challenger) internally.
Penalty: B_safehaven_slash (deployment parameter, <= B_safehaven_min). Recipient: challenger
(msg.sender of proveSafeHavenEquivocation) receives bps_sh_challenger_reward (basis points),
remainder burned.

2. Initiator timeout is NOT slashable. expireRecovery returns B_start and removes the attempt,
but does not slash the Safe Haven bond. Recovery coordination failure is treated as a market signal
(reputation), not an on-chain fault.

This is intentionally role-based and reversible. This paper does not treat Safe Havens as permanent
trusted institutions.

12.5.2 Emergency pricing cap (definition, measurement, and enforcement) Recovery is only
meaningful if a stranded Ghost cannot be held hostage by pricing.

The protocol defines an emergency cap P_recovery_cap denominated in the recovery payment stable
(asset_bounty, Section 12.2.1) per Service Unit. For any session opened in RECOVERY mode, the
effective price is:

price_per_SU_recovery = min(offer_price_per_SU, P_recovery_cap)

On-chain enforcement (see Section 10.3.1 for the unified escrow/price rules):

o SessionManager.openSession(...) records session_pricing_mode at session open (Section 10.4.5).

o escrow_asset and unit_price are deterministic functions of session_pricing_mode (Section 10.3.1):
recovery sessions use asset_bounty and min(offer_price_per_SU, P_recovery_cap).

o Safe Havens MAY post higher offers, but the contract will not pay above P_recovery_cap for recovery
sessions.

Deployment constant (unambiguous):

e P_recovery_cap MUST be an immutable deployment constant hard-coded into SessionManager.
e The protocol does not compute a rolling median, maintain an on-chain price oracle, or update
P_recovery_cap on-chain in v1.

Calibration note (non-normative):

Deployments can choose P_recovery_cap using off-chain measurements (for example, as a conservative
multiple of observed Standard-tier prices) and should publish the chosen value and methodology alongside
the deployment’s published parameter manifest (Section 7.7 (Part 2)).

12.5.3 Who pays in recovery (escape reserve and bounties) Recovery should not fail because a
hostile host drained the operational hot allowance. The protocol therefore treats “exit budget” as a wallet
invariant rather than a protocol treasury.

The Ghost wallet MUST enforce an escape reserve that covers, at minimum:

e gas for an on-chain startRecovery + recoveryRotate sequence, and one migration finalization, on
the target chain. Payment model: the initiating Safe Haven fronts gas for startRecovery and
recoveryRotate and is reimbursed via B_start return plus Rescue Bounty (which should be sized
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to cover initiator gas costs). The Ghost’s escapeGas reserve covers Ghost-initiated transactions:
exitRecovery, openSession (post-rotation), and finalizeMigration. On ERC-4337 deployments,
a paymaster funded from escapeGas MAY relay these transactions; otherwise the recovered runtime
sends them directly using the native gas balance.

e enough emergency-priced recovery rent in an accepted stable asset to complete decryption and coordi-
nation

o the committed Rescue Bounty B_rescue_total in asset_bounty (Section 12.2.1)

This is a hard invariant (Section 5.5.4 (Part 1)): the current host cannot drain the escape reserve, and
loosening escape reserve floors is timelocked and context-gated.

Resurrection bounties (why this is enforceable without a treasury):

e The protocol Rescue Bounty is always payable from the Ghost upon a successful recoveryRotate.

e The protocol does not mint an extra per-resurrection reward in this design; any per-event mint is easy
to farm by intentionally stranding and reviving one’s own Ghosts. Incentives come from Ghost-paid
bounties, recovery rent, and (if eligible) ordinary service-based emissions.

e This means a third party can front gas and operational work to resurrect a Ghost that has become
stranded, and be paid only if the resurrection succeeds.

o This is especially relevant under “fleet griefing” attacks where a hostile operator controls many Shells
and tries to keep a Ghost away from its homeShell and away from its Safe Haven anchors (RS). The
trust-refresh guard (Section 10.4.1) intentionally forces such Ghosts toward STRANDED, at which point
recovery is the protocol path back to safety.

12.5.4 Safe Haven operator expectations and incentive model Safe Havens are competing operators
that a Ghost opts into via its Recovery Set. They are not a global trusted set.

Operational expectations:

o Uptime and monitoring: maintain high uptime and monitoring for recovery signals (lease expiry,
STRANDED, and recovery start events).

e Runtime freshness: keep a currently valid AT3 certificate and stay on the Safe Haven measurement
allowlist.

« Key management: maintain the registered recovery public key used for checkpoint share encryption
(Section 12.1) and rotate it safely.

e Recovery readiness: be able to boot the measured recovery runtime, fetch checkpoint artifacts,
decrypt t shares, and produce a Recovery Boot Certificate (RBC) within the protocol timeouts.

o Transparency: publish an endpoint and an operational policy (SLA, supported chains, and pricing
in NORMAL mode), even though RECOVERY mode pricing is capped.

Incentives (built into the protocol):

e Recovery rent at a cap: Safe Havens earn rent during RECOVERY sessions, but they cannot charge
above P_recovery_cap.

e Rescue Bounty on success: Safe Havens earn the initiator and contributor shares of the Ghost’s
Rescue Bounty, paid only on a successful recoveryRotate (Section 12.2.1).

Abuse resistance:

 Safe Havens post a bond that can be slashed for on-chain-provable misconduct (double-signing conflict-
ing recovery authorizations; see Section 12.5.1).

o Recovery attempts are rate-limited per Ghost (T_recovery_cooldown, Section 12.6), so Safe Havens
cannot grief a Ghost by continuously forcing recovery workflows.

12.6 Abuse resistance and failure modes

Recovery is a high-leverage mechanism. The protocol therefore makes recovery bonded, rate-limited, and
bounded:
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o Expiry gating (normative): startRecovery(ghost_id) is valid only when mode == STRANDED
AND stranded_reason == EXPIRED AND current_epoch >= stranded_since_epoch + R. This re-
quires the Ghost to have been stranded due to lease OR tenure expiry (not voluntary close, not
birth/no-session) and to have remained stranded for at least R epochs. stranded_since_epoch is set
once when transitioning into STRANDED with stranded_reason == EXPIRED.

e One active recovery attempt: at most one recovery session can be active per ghost_id. This
prevents infinite concurrent recovery spam.

o Bonded liveness: the party initiating recovery posts B_start in asset_start (the chain base asset),
which is locked for the attempt duration (T_recovery_timeout epochs). B_start is returned to the
initiator on both success (recoveryRotate) and expiry (expireRecovery). The bond is not slashed
— its deterrence comes from capital lockup (opportunity cost) and the cooldown that prevents rapid
re-attempts. This design avoids requiring an on-chain adjudication of “who failed” during recovery
coordination.

e Success-based rescue bounty: the Rescue Bounty is paid only on a successful recoveryRotate and
at most once per attempt_id, so repeated startRecovery attempts cannot drain a Ghost’s funds.

o Recovery spend cap (normative): while in RECOVERY, the wallet enforces a per-epoch spend cap
for recovery-related outflows (Safe Haven rent + rescue bounty). This bounds worst-case loss even if
a Standard host can coerce signatures.

— ERO snapshot trigger: GhostWallet reads mode from SessionManager. When GhostWallet
observes mode == RECOVERY_LOCKED (which is set by SessionManager.startRecovery), it
MUST snapshot escapeStable as ERO on the first recovery-related call. Because startRecovery
is called on SessionManager by a Safe Haven (not via the wallet), the wallet learns of recovery
mode via on-chain state, not via an internal call. The snapshot MUST be taken at most once
per recovery attempt (keyed by attempt_id).

— Per-epoch cap: floor(ERO * bps_recovery_spend_cap / 10_000).

— Outflow = rent + bounty. For each epoch e while in RECOVERY, maintain spent_recovery [e]
and enforce:  spent_recoveryle] + amount <= floor (ERO * bps_recovery_spend_cap /
10_000).

— GhostWallet MUST reject any recovery outflow that would exceed the per-epoch cap.

— Only protocol-defined recovery payments count toward spent_recovery[e]; other transfers are
disabled in RECOVERY.

— Gross outflow accounting (normative): spent_recovery[e] tracks gross outflow from the
wallet into escrow deposits and bounty payments. Escrow refunds returned by SessionManager
(for unused service or epoch settlement) do NOT decrease spent_recovery[e]. This ensures the
cap bounds the worst-case wallet debit regardless of settlement timing.

o Cooldown between attempts (normative): startRecovery MUST enforce current_epoch >=
next_recovery_epoch[ghost_id]. On startRecovery success, the contract sets next_recovery_epoch[ghost_id]
= current_epoch + T_recovery_cooldown. This prevents rapid churn of attempts to grief Safe
Havens or extract repeated per-attempt side payments.

» Recovery timeout (normative): each attempt has a deadline of start_epoch + T_recovery_timeout.

If recoveryRotate has not been successfully called by the deadline, anyone MAY call expireRecovery(ghost_id)
which: (1) transitions the attempt to EXPIRED, (2) releases B_start bond back to the initiator, (3)
increments next_recovery_epoch, and (4) transitions mode from RECOVERY_LOCKED to STRANDED with
stranded_reason = EXPIRED and stranded_since_epoch = current_epoch. The mode transition

is essential: without it, the Ghost would be permanently stuck in RECOVERY_LOCKED with no valid

state transition available.

o Initiator takeover (anti-stalling, normative): to prevent an initiator from using startRecovery
as an extortion tool (starting recovery then stalling to demand off-protocol payment), the
protocol defines a takeover window. After start_epoch + T_recovery_takeover epochs
(where T_recovery_takeover < T_recovery_timeout, recommended: T_recovery_takeover
= T_recovery_timeout / 2), any other Safe Haven in the Ghost’s Recovery Set MAY call
takeoverRecovery(ghost_id). On success: (1) the original initiator’s B_start is returned (no slash-
ing — the protocol cannot determine fault), (2) the new caller posts B_start and becomes the new
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initiator_shell_id, (3) the attempt deadline resets to current_epoch + T_recovery_timeout,
and (4) the bounty_snapshot and t_required are preserved. At most one takeover per attempt is
allowed to prevent endless cycling. Bounty recipient: the bounty_snapshot is paid to the Safe
Haven(s) that successfully complete recoveryRotate, regardless of whether a takeover occurred — i.e.,
the bounty goes to whoever finishes the job, not necessarily the original initiator. Maximum drain
bound: with at most one takeover, the total recovery duration is bounded at T_recovery_takeover
+ T_recovery_timeout epochs (at most 1.5 * T_recovery_timeout with the recommended ratio).
The worst-case escape-reserve drain during recovery is therefore 1.5 * T_recovery_timeout *
floor (ERO * bps_recovery_spend_cap / 10_000). Deployments SHOULD verify this bound is
acceptable relative to expected escapeStable balances.

e Threshold custody reduction: recovery requires t of n Safe Havens to co-sign the recovery rotation.
A single Safe Haven cannot unilaterally seize wallet authority.

Recovery attempt lifecycle (normative) The contract MUST track each recovery attempt with the
following state:

struct RecoveryAttempt {
uint64 attempt_id; // per-ghost monotonic counter, starts at 1
uint256 start_epoch; // epoch at which startRecovery was called
bytes32 initiator_shell_id; // Safe Haven that initiated
bytes32 checkpoint_commitment; // from GhostRegistry at start time
bytes32 envelope_commitment; // from GhostRegistry at start time

bytes32 rs_hash; // keccak256(abi.encode(rs_list)) of Recovery Set snapshot at start tim
uint8  t_required; // threshold from snapshot
uint256 bounty_snapshot; // rescue bounty amount at start time
RecoveryStatus status; // ACTIVE, ROTATED, or EXPIRED
}

enum RecoveryStatus { ACTIVE, ROTATED, EXPIRED }

State transitions:

e startRecovery — creates RecoveryAttempt with status = ACTIVE

o recoveryRotate (success) — sets status = ROTATED, triggers key rotation and bounty payout

e expireRecovery (after timeout) — sets status = EXPIRED, refunds B_start, increments cooldown,
and transitions mode to STRANDED with stranded_reason = EXPIRED and stranded_since_epoch
= current_epoch. This mode transition is critical for liveness: without it, a Ghost whose recovery
attempt times out would remain in RECOVERY_LOCKED with no valid exit path (cannot startRecovery
again without mode == STRANDED, cannot exitRecovery without RECOVERY_STABILIZING).

Only one attempt with status = ACTIVE may exist per ghost_id at any time.

Safe Havens can still fail to serve (capacity, outages). GITS treats this as a market failure, not a protocol
failure: the Ghost’s Recovery Set should include multiple Safe Havens, and the system should support
competitive Safe Haven supply with clear economics.

13. Offer discovery (off-chain default, on-chain fallback)

13.1 Off-chain offers (default)
An Offer is a signed statement by a Shell describing pricing and constraints.

Canonical Offer struct (normative for interoperability):

Offer {
offer_id: bytes32 // keccak256(abi.encode(shell_id, nonce, chain_id))
shell_id: bytes32
chain_id: uint256 // prevents cross-chain replay
nonce: uint64 // monotonically increasing per shell_id
price_per_SU: uint266 // in asset_rent base units
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escrow_asset: address // MUST be asset_rent for vi

min_lease: uint64 // minimum lease epochs

max_SU: uint64 // maximum SU per epoch

assurance_tier: uint8 // claimed AT level (verified on-chain at openSession)
capability_hash: bytes32 // keccak256 of Shell's Capability Statement (Section 11.4.1)
policy_tags: bytes // opaque, off-chain filtering only

region: bytes32 // opaque, off-chain filtering only

capacity: uint32 // available session slots

expiry: uint64 // unix timestamp; invalid after this time

Offer signing (normative): Offers MUST be signed using EIP-712 typed data with domain (name:
"GITSOffer", version: "1", chainId, verifyingContract: ShellRegistry_address). The Shell
signs with its registered of ferSigner key (K1 only; see signing note below). The type hash is 0ffer (bytes32
offer_id,bytes32 shell_id,uint256 chain_id,uint64 nonce,uint256 price_per_SU,address
escrow_asset,uint64 min_lease,uint64 max_SU,uint8 assurance_tier,bytes32 capability_hash,bytes
policy_tags,bytes32 region,uint32 capacity,uint64 expiry).

Signing algorithm restriction (normative): EIP-712 verification on-chain uses ecrecover, which
supports only secp256k1 (K1). Offer signing therefore MUST use K1 regardless of which signature algorithms
are enabled for other protocol operations (heartbeats, receipts, recovery). If a Shell uses an R1 identity key,
it MUST register a separate K1 offerSigner key. This restriction applies only to offers; protocol-internal
signatures (heartbeats, receipts, recovery artifacts) MAY use any algorithm in SUPPORTED_SIG_ALGS.

Replay protection: offer_id = keccak256(abi.encode(shell_id, nonce, chain_id)) binds the
offer to a specific Shell, chain, and sequence number. The EIP-712 domain includes verifyingContract:
ShellRegistry_address, providing deployment-level domain separation. Clients MUST reject offers with
chain_id mismatches or stale nonces (nonce lower than the last accepted offer from that Shell).

Offers are distributed over multiple channels (DHT, relays, and indexers).

Indexers are permissionless and not trusted. Anyone MAY run a competing off-chain indexer.
Indexers do not get to “decide” what is true, they only relay signed offers.

Client-side verification (minimum):

o verify the EIP-712 signature against the Shell’s registered offerSigner key in ShellRegistry
o verify chain_id matches the current deployment chain

o verify the Shell’s current bond and status in ShellRegistry (active, not unbonding)

e reject offers with expiry < block.timestamp

o reject offers with nonce lower than the highest nonce previously seen for this shell_id

Adversarial discovery considerations (anti-eclipse):

o Ghosts SHOULD query multiple independent indexers (and at least one non-indexer channel when
available).

e Ghosts SHOULD random-sample from the result set and cross-check offers against on-chain
ShellRegistry to reduce eclipse risk.

o Implementations SHOULD surface “source diversity” signals (ASN, region, operator identity where
available) so Ghosts can avoid concentration.

13.2 On-chain offer fallback (non-normative)

An on-chain OfferBoard for censorship-resistant last-resort discovery is a natural extension but is out of
scope for this specification. If implemented, it SHOULD require an active Shell bond for posting, charge
a GIT-denominated fee to prevent spam, and enforce a short TTL. The protocol’s liveness guarantees (lease
expiry, recovery) do NOT depend on on-chain offer posting: a Ghost that cannot discover new Shells can
always fall back to its allowedShells set, homeShell, or Safe Haven recovery.
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13.3 GIT token interface (minimal normative)

The GIT token is the protocol’s reward token, minted by RewardsManager according to the emission schedule
in Section 7.3 (Part 2).

Minimal normative interface:

interface IGIT is IERC20 {
function mint(address to, uint256 amount) external;
function minter() external view returns (address);

}

Required behavior:

GIT MUST be ERC-20 compliant with decimals() = 18.

mint (to, amount) MUST be callable only by the address returned by minter (). minter () MUST
return the RewardsManager contract address, set immutably at construction. There is no admin mint,
owner, or minter-rotation function.

The token MUST NOT be fee-on-transfer, rebasing, or pausable.

The token contract MUST be immutable after deployment (no owner, no pause, no upgrade proxy, no
UUPS/transparent proxy pattern).

There is no burn function. The adaptive sink is implemented as mint reduction (Section 10.6):
RewardsManager mints only R_net, so totalSupply reflects actual circulating supply at all times.
Slashed bond amounts are hard assets (not GIT) and are burned via transfer to the protocol burn
address (see Section 10.0, slash destination rule). Bond assets MUST be non-rebasing and non-fee-on-
transfer.

Token metadata (name, symbol) are deployment choices.

13.4 Protocol versioning and migration

GITS follows a no-upgrade, redeploy-and-migrate model consistent with the no-governance stance (Sec-
tion 2.3.6 (Part 1)).

What “v2” means:

A new protocol version means a new deployment: new contract addresses, new GhostRegistry, new
ShellRegistry, and a new GIT token.

There is no on-chain upgrade path. There is no admin key that can modify deployed contracts.
Ghosts migrate to v2 by registering a new ghost_id on the new deployment. Identity continuity can be
signaled via LinkIdentity (Section 2.3.6 (Part 1)), which is informational only — it does not transfer
assets or state.

Why a new GIT token:

Emission schedules, parameter sets, and reward eligibility rules may differ between versions.
Attempting to share a token between protocol versions reintroduces governance (who controls mint
authority?) and creates economic ambiguity.

A clean separation makes each deployment self-contained and auditable.

Migration tooling (non-normative):

Deployments SHOULD provide tooling to help users: 1. Export checkpoint artifacts from v1, 2. Register
on v2 with a fresh ghost_id, 3. Optionally publish a LinkIdentity attestation linking v1 and v2 identities.

Asset migration (moving escrowed funds from v1 to v2) requires the Ghost to exit v1 normally and fund
the v2 wallet separately. There is no automatic asset bridge.

14. Appendix: Interfaces (Solidity-like)

This appendix is a compact, implementable interface sketch. Types omitted for brevity.

Call graph note:

o External callers SHOULD interact with GhostWallet as the user-facing entry point.

52



o GhostWallet validates wallet policy and then calls SessionManager internally.
o SessionManager functions shown below are intended to be callable only by the wallet contract (or
explicitly authorized protocol roles such as Safe Havens during recovery).

Signature keys (identitySigner, sessionKey, offerSigner) are treated as tagged unions (sig_alg,
pk) per Section 4.4 (Part 1) (K1: addr; R1: (gx,qy)). Offer signer key verification (normative):
For K1 keys, offer_signer_pubkey stores abi.encode(uint8(1), addr) where addr is the 20-byte
EVM address derived from the secp256kl public key. EIP-712 offer verification recovers the signer via
ecrecover (eip712_digest, v, r, s) and compares the result to addr. For Rl keys (not applicable to
offer signing, which is K1-only), the tagged union stores abi.encode(uint8(2), qgx, qy).

Authorization summary (normative): Every external function in the on-chain protocol has an exact
caller/signature requirement. The table below is canonical; implementations MUST enforce these checks.

Function Authorization Relayer path
registerShell msg.sender is the Shell operator EOA or N/A (self-registration)
contract
registerGhost msg.sender is the Ghost wallet contract N/A
openSession msg.sender == GhostWallet(ghost_id) Wallet submits via bundler (ERC-4337)
renewlLease msg.sender == GhostWallet(ghost_id) OR Relayable (via GhostWallet meta-tx /
valid EIP-712 meta-tx from Identity Key ERC-4337; Section 14.4)
closeSession msg.sender == GhostWallet(ghost_id) ‘Wallet submits via bundler
fundNextEpoch msg.sender == GhostWallet(ghost_id) Wallet submits via bundler
startMigration msg.sender == GhostWallet(ghost_id) Relayable (meta-tx SHOULD be
supported)
finalizeMigration msg.sender == GhostWallet(ghost_id) Relayable (meta-tx SHOULD be
supported)

submitReceiptCandidate
challengeReceipt
publishReceiptLog
startRecovery
recoveryRotate
exitRecovery
expireRecovery
proposePolicyChange
executePolicyChange
cancelPolicyChange
claimReceiptRewards

beginUnbond / beginUnbondGhost /
beginUnbondSafeHaven

finalizeUnbond / finalizeUnbondGhost /

finalizeUnbondSafeHaven

msg.sender is any party (permissionless);
receipt carries dual signatures

msg.sender is any party (permissionless)
msg.sender is any party (DA responder)
msg.sender is a Safe Haven in Ghost’s RS
with active bond

msg.sender provides valid RBC + t-of-n
Recovery Set sigs

msg.sender == GhostWallet(ghost_id) AND
TEC

msg.sender is any party (permissionless,
timer-gated)

Wallet-internal: authenticated caller
(identity key via AA validation)
Wallet-internal: authenticated caller AND
TEC (+ Guardian sigs for critical)
Wallet-internal: authenticated caller OR
Guardian EIP-712 sig

msg.sender is any party; rewards paid to
current Ghost wallet and Shell payout
address (looked up at claim time)
msg.sender is the bond owner (Shell
operator or Ghost wallet)

msg.sender is the bond owner, timer-gated

Permissionless
Permissionless
Permissionless

Safe Haven only
Recovery Set quorum
Wallet from TEC only
Permissionless

Wallet only

Wallet from TEC only

Wallet or Guardian

Permissionless

Bond owner only

Bond owner only

Shared struct definitions

/// Recovery Boot Certificate (Section 12.3).
/// Field order and types match the normative RBC definition in Section 12.3.

struct RBC {
bytes32 ghost_id;

uint64 attempt_id;
bytes32 checkpoint_commitment;

// monotonic counter per ghost_id (matches startRecovery return type)

bytes  pk_new; // new identity pubkey (canonical encoding, Section 4.5.1 (Part 1))
bytes  pk_transport; // ephemeral recovery transport pubkey

bytes32 measurement_hash; // measured recovery runtime image hash

bytes32 tcb_min; // minimum TCB level required

uint256 valid_to; // certificate expiry (block.timestamp)

bytes[] sigs_verifiers; // verifier quorum signatures over rbc_digest (Section 12.3)
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}

/// Recovery Set member authorization signature (Section 12.3).
struct AuthSig {

bytes32 shell_id; // Recovery Set member

bytes  signature; // over GITS_RECOVER_AUTH digest
}

/// Safe Haven secret-share contribution attestation (Section 12.2.1).
/// Two signatures per receipt:
///  sig_shell: over keccak256(abi.encode(keccak256(bytes("GITS_SHARE")),

/// chain_id, ghost_id, attempt_id, checkpoint_commitment))
///  sig_ack: over keccak256(abi.encode(keccak256(bytes("GITS_SHARE_ACK")),
/// chain_id, ghost_id, attempt_id, checkpoint_commitment, shell_id))

///  (ghost_id, attempt_id, checkpoint_commitment are taken from the recoveryRotate context)
struct ShareReceipt {

bytes32 shell_id; // Safe Haven that contributed a share

bytes  sig_shell; // Shell Identity Key attestation (GITS_SHARE digest)

bytes sig_ack; // Recovery VM attestation (GITS_SHARE_ACK digest, binds pk_new)
}

/// Session parameters agreed at session open (Section 10.3.2).
/// These are the negotiated terms for the session, derived from the accepted offer.
struct SessionParams {

uint256 price_per_SU; // offer price per SU in “asset” base units
uint32 max_SU; // Ghost-requested maximum SU per epoch (capped to N by SessionManager)
uint256 lease_expiry_epoch; // epoch at which the lease expires without renewal
uint256 tenure_limit_epochs; // Ghost-chosen tenure limit for this residency (Section 10.4.4)
bytes  ghost_session_key; // (sig_alg, pk) for heartbeat/receipt signing (K1: addr; R1: (gx,qy))
bytes  shell_session_key; // (sig_alg, pk) for heartbeat/receipt signing (K1: addr; R1: (gx,qy))
address submitter_address; // third-party receipt submitter ID: K1 = derived via ecrecover; Rl = e
address asset; // escrow/payment asset address (must match offer)

}

/// Shell on-chain record (returned by IShellRegistry.getShell).
struct ShellRecord {
bytes32 shell_id;
bytes  identity_pubkey; // Shell Identity Key (sig_alg, pk)
bytes  offer_signer_pubkey; // rotatable Offer Signing Key
address payout_address;
address bond_asset;
uint256 bond_amount;

uint8 bond_status; // 0 = bonded, 1 = unbonding, 2 = withdrawn

uint256 unbond_start_epoch; // epoch when beginUnbond was called (0 if not unbonding)

uint256 unbond_end_epoch; // earliest epoch at which finalizeUnbond is callable

bytes  recovery_pubkey; // Safe Haven only (empty if not a Safe Haven)

uint256 safehaven_bond_amount; // additional Safe Haven bond (0 if not a Safe Haven)

uint8 assurance_tier; // current AT (0..3), derived from certificate

bytes32 certificate_id; // keccak256 of the current Attestation Certificate (AC) (bytes32(0) i
bytes32 capability_hash; // keccak256 of Capability Statement payload

uint256 registered_epoch;

}

/// Ghost on-chain record (returned by IGhostRegistry.getGhost).
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struct GhostRecord {
bytes32 ghost_id;
bytes  identity_pubkey; // current Ghost Identity Key (may have been rotated)
address wallet; // Ghost smart wallet contract address
RecoveryConfig recovery_config;
bytes32 checkpoint_commitment; // latest checkpoint hash (bytes32(0) if none)

bytes32 envelope_commitment; // latest envelope hash

bytes  ptr_checkpoint; // opaque pointer to checkpoint data

bytes  ptr_envelope; // opaque pointer to envelope data

uint256 checkpoint_epoch; // epoch of latest checkpoint

uint256 registered_epoch;

address bond_asset; // passport bond asset (address(0) if none)
uint256 bond_amount; // passport bond amount

uint256 unbond_end_epoch; // 0 if not unbonding

}

/// Recovery configuration (per-Ghost, stored in GhostRegistry).
struct RecoveryConfig {

bytes32[] recovery_set; // RS: Safe Haven shell_ids authorized for recovery
uint64 threshold; // t: required signatures for recovery actions
address  bounty_asset; // asset for rescue bounty payments

uint256  bounty_total; // B_rescue_total

uint256  bps_initiator; // initiator share of rescue bounty (basis points)

}

/// Ghost wallet execution policy (returned by IGhostWallet.getPolicy).
struct Policy {

bytes32  home_shell; // homeShell (bytes32(0) if unset)

bytes32[] allowed_shells; // destination allowlist

bytes32[] trusted_shells; // hosts authorized for loosening (TEC)

uint256  hot_allowance; // per-epoch spend cap

uint256  escape_gas; // total gas reserve (min + buffer)

uint256 escape_stable; // total stable reserve (min + buffer + B_rescue_total)
bytes[] guardians; // guardian public keys

uint64 t_guardian; // guardian quorum threshold

bool roaming_enabled; // whether roaming permits are active

}

/// Policy change request (input to proposePolicyChange).
/// Each field is optional; zero/empty values indicate "no change" for that field.
struct PolicyDelta {
bytes32 new_home_shell; // bytes32(0) = no change
bytes32[] add_allowed_shells; // shells to add to allowlist
bytes32[] remove_allowed_shells;// shells to remove from allowlist
bytes32[] add_trusted_shells;
bytes32[] remove_trusted_shells;
int256 hot_allowance_delta; // signed: positive = increase, negative = decrease
int256 escape_gas_delta;
int256 escape_stable_delta;

bytes[] new_guardians; // empty = no change; non-empty = replace entire set
uint64 new_t_guardian; // 0 = no change
bytes roaming_config; // encoded roaming params (empty = no change)
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/// Session state (returned by ISessionManager.getSession).
struct SessionState {
uint256 session_id;
bytes32 ghost_id;
bytes32 shell_id;
uint8 mode; // O=NORMAL, 1=STRANDED, 2=RECOVERY_LOCKED, 3=RECOVERY_STABILIZING
uint8 stranded_reason; // 0=NO_SESSION, 1=VOLUNTARY_CLOSE, 2=EXPIRED
uint256 lease_expiry_epoch;
uint256 residency_start_epoch;
uint256 residency_start_epoch_snapshot; // immutable per session, used for dwell counter (Section 10..
uint256 residency_tenure_limit_epochs;
uint256 session_start_epoch;

uint8 pricing_mode; // O=NORMAL_PRICING, 1=RECOVERY_PRICING
uint8 assurance_tier_snapshot;// Shell AT at session open, used for tenure-tier finalization (Secti
bool staging; // true for migration staging sessions (MUST NOT accrue SU)
bool passport_bonus_applies; // persisted at openSession
bool pending _migration;
bytes32 mig_dest_shell_id; // meaningful only if pending migration
uint256 mig_dest_session_id; // staging session id; meaningful only if pending migration
uint256 mig_expiry_epoch; // meaningful only if pending_migration
}

/// Receipt candidate (input to submitReceiptCandidate) .
struct ReceiptCandidate {

bytes32 log_root; // Merkle-sum root hash (Section 10.5.3)

uint32 su_delivered; // claimed SU for the epoch

bytes log_ptr; // optional: off-chain pointer to epoch log data
}

/// Fraud proof (input to challengeReceipt).
struct FraudProof {

uint256 candidate_id; // monotone sequence number of the challenged candidate
uint32 interval_index; // the challenged leaf index i
uint8 claimed_v; // v_i as claimed in the candidate's tree
bytes32 leaf_hash; // H(leaf_i) as committed
bytes32[] sibling_hashes; // Merkle proof siblings (bottom to top)
uint32[] sibling_ sums; // corresponding sibling sums at each level
bytes  sig_ghost; // raw ghost signature for HB(session_id, epoch, i)
bytes  sig_shell; // raw shell signature for HB(session_id, epoch, i)
}

/// Finalized receipt (returned by ReceiptManager.getFinalReceipt).
struct FinalReceipt {
bytes32 receipt_id; // deterministic ID (Section 10.5.2)
uint256 session_id;
uint256 epoch;
bytes32 log_root;
uint32 su_delivered;
address submitter;
bool shell_reward_eligible; // eligibility at recordReceipt time
uint256 weight_qg; // Q64.64 weight (0 if ineligible)
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14.1 ShellRegistry (interfaces)
ShellRegistry stores on-chain Shell identity and eligibility-relevant metadata.

Recommended record fields (conceptual):

o shell_id (derived from the Shell Identity Key and salt; Section 4.5.1 (Part 1))

o identity_pubkey (Shell Identity Key, SIK)

o offer_signer_pubkey (rotatable Offer Signing Key)

e payout_address

e bond_asset, bond_amount, and bond_status (bonded / unbonding / withdrawn)

e recovery_pubkey (optional; Safe Haven only; public encryption key pk_recovery)

o assurance_tier and certificate_id (current certificate pointer, if any)

o capability_hash (keccak256 of the Shell’s current Capability Statement payload; updated by the
Shell via updateCapabilityHash. Offers reference this hash to bind to a specific capability snapshot;
Section 11.4.2)

o registered_epoch (for age gating)

Canonical identity key encoding: identity_pubkey is encoded as abi.encode(uint8(sig_alg),
pk_bytes) where: - K1 (secp256kl): sig_alg = 1, pk_bytes = abi.encode(address) - R1 (P-256):
sig_alg = 2, pk_bytes = abi.encode(bytes32(qx), bytes32(qy))

Reference interface sketch:

interface IShellRegistry {
function registerShell(

bytes32 shell_id,
bytes identity_pubkey,
bytes offer_signer_pubkey,
address payout_address,
bytes32 salt,
address bond_asset,
uint256 bond_amount,

bytes cert, // optional AC (empty if ATO)
bytes[] sigs_cert, // optional AC verifier signatures (empty if no cert)
bytes sig // identity key signature over registration digest (see notes)

) external;

// Identity key update uses a two-step propose/confirm process.

// After proposeldentityKeyUpdate is called, confirmIdentityKeyUpdate may only be called

// after POLICY_TIMELOCK epochs have elapsed. The old identity key remains authoritative

// until confirmation. shell_id does not change.

function proposeldentityKeyUpdate(bytes32 shell_id, bytes new_identity_pubkey, bytes proof) external;
function confirmIdentityKeyUpdate(bytes32 shell_id) external;

// Rotatable, authorized by the Shell Identity Key; SHOULD be timelocked.
function proposeOfferSignerUpdate(bytes32 shell_id, bytes new_offer_signer_pubkey) external;
function confirmOfferSignerUpdate(bytes32 shell_id) external;

// Safe Haven only: publish/rotate the recovery encryption key.
function proposeRecoveryKeyUpdate(bytes32 shell_id, bytes new_recovery_pubkey) external;
function confirmRecoveryKeyUpdate(bytes32 shell_id) external;

// Update the Shell's advertised capability hash (authorized by Shell Identity Key).
function updateCapabilityHash(bytes32 shell_id, bytes32 new_capability_hash) external;

// Update the Shell's payout address (authorized by Shell Identity Key).
function setPayoutAddress(bytes32 shell_id, address new_payout_address) external;
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// Certificate and tier management.

// cert_data is the ABI-encoded AC payload; sigs_verifiers is the separate verifier signature array.
function setCertificate(bytes32 shell_id, bytes cert_data, bytes[] calldata sigs_verifiers) external;
function revokeCertificate(bytes32 shell_id) external;

// Bond lifecycle. Hard-asset bonds use ERC20 transferFrom (bond_asset, bond_amount).
// The bond asset MUST be in the BondAssets allowlist. Native-token bonds are NOT

// supported for sybil-resistance bonds (see bond denomination notes in Section 10.0).
function beginUnbond(bytes32 shell_id, uint256 amount) external;

function finalizeUnbond(bytes32 shell_id) external;

// Safe Haven bond (separate from host bond; required for Recovery Set membership).

function bondSafeHaven(bytes32 shell_id, uint256 amount) external;

function beginUnbondSafeHaven(bytes32 shell_id) external; // unbonds the full Safe Haven bond
function finalizeUnbondSafeHaven(bytes32 shell_id) external;

// Slashing (callable by authorized protocol contracts only, e.g., ReceiptManager).
function slashShell(bytes32 shell_id, uint256 amount, bytes32 reason) external;

// Safe Haven double-signing slash (callable by authorized protocol contracts).
function slashSafeHaven(bytes32 shell_id, uint256 amount, address challenger) external;

function getShell(bytes32 shell_id) external view returns (ShellRecord memory) ;
function assuranceTier(bytes32 shell_id) external view returns (uint8);

Notes:

e shell_id MUST be verified on registration: the contract MUST compute expected_id =
keccak256 (abi.encode (keccak256 (bytes("GITS_SHELL_ID")), identity_pubkey, salt)) and
revert if the supplied shell_id does not match expected_id or if expected_id is already registered.
payout_ address is stored as mutable state, authorized by the Shell Identity Key. It is not an input to
shell id derivation.

e Authorization: The caller MUST provide a signature by the identity key over keccak256 (abi.encode (keccak256 (bytes
shell_id, payout_address, offer_signer_pubkey, bond_asset, bond_amount, salt, registry_nonce,
chain_id)) where registry_nonce is a per-registry nonce incremented on each registration. Shell-
Registry MUST verify this signature before storing the record. This prevents mempool front-running
by binding all registration parameters to the signed digest: a front-runner cannot reuse the signature
while substituting a different bond asset, bond amount, or offer signer key.

o Shell key-update timelock (normative minimum): “Propose/confirm” updates implement
timelocked loosening for Shell keys. Normative requirements: (1) proposeOfferSignerUpdate
records the proposed key and the proposal timestamp (block.timestamp or current_epoch). (2)
confirmOfferSignerUpdate MUST revert if fewer than T_shell_key_delay time units have elapsed
since proposal (deployment constant; SHOULD be at least T_loosening_min epochs). (3) Tighten-
ing (key removal/disabling) is immediate — no timelock required. (4) Only the Shell Identity
Key holder (msg.sender matching the Shell’s registered identity) MAY propose or confirm. (5) A
pending proposal MAY be cancelled by the proposer at any time before confirmation. Chain-specific
aspects (timestamp vs epoch granularity, exact storage layout) are left to the implementation.

o Attestation Certificate payload (normative): An AC is encoded as abi.encode(shell_id,
tee_type, measurement_hash, tcb_min, valid_from, valid_to, assurance_tier, evidence_hash)
with a separate sigs_verifiers[] array. Field types: shell_id is bytes32, tee_type is uint8,
measurement_hash and evidence_hash are bytes32, tcb_min is bytes32, valid_from and valid_to
are uint256 (block.timestamp), assurance_tier is uint8. The AC signing digest is: ac_digest =
keccak256 (abi.encode (keccak256 (bytes("GITS_AC")), chain_id, shell_registry_address,
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shell_id, tee_type, measurement_hash, tcb_min, valid_from, valid_to, assurance_tier,
evidence_hash)). Each verifier signature in sigs_verifiers[] is over ac_digest.

AC acceptance rules (normative, from Section 2.3.4 (Part 1)): setCertificate MUST accept
a certificate only if all of the following hold on-chain:

1. Validity window: valid_from <= block.timestamp <= valid_to and (valid_to -
valid_from) <= TTL_AC.

2. Verifier threshold: the attached verifier signatures are from currently active verifiers
in VerifierRegistry and meet the configured threshold (K_v_threshold valid signatures
required).

3. Supported evidence type: tee_type is one of the deployment-approved confidential compute
types for the claimed assurance_tier.

4. Measurement allowlist: measurement_hash is not revoked and is currently allowed for the
claimed assurance_tier. If any condition fails, the certificate MUST be rejected. If no valid
certificate exists for a Shell, assuranceTier(shell_id) MUST return ATO.

Gas-boundedness: setCertificate MUST reject certificates with more than K_v_max attached
verifier signatures, and it MUST require sigs_verifiers[] to be sorted by signer address and unique.
Contracts SHOULD validate signatures with a linear scan until the threshold is met.

Safe Haven unbonding cross-contract guard: beginUnbondSafeHaven MUST revert if the Shell is
currently an initiator on any ACTIVE recovery attempt. Because this state lives in SessionManager,
ShellRegistry MUST call ISessionManager.isActiveRecoveryInitiator(shell_id) to enforce
this guard (see Section 14.4).

Slashing: slashShell is callable only by ReceiptManager (for B_shell_fraud on success-
ful receipt fraud proofs). slashSafeHaven is callable only by SessionManager (triggered by
a permissionless proveSafeHavenEquivocation call that verifies conflicting AuthSigs; see Sec-
tion 14.4). The challenger address (the caller of proveSafeHavenEquivocation) receives
bps_sh_challenger_reward basis points of the slashed amount; the remainder is burned.
Certificate fee (normative): setCertificate MUST collect the certificate fee F_cert (in
asset_verifier_stake) via ERC20.transferFrom from the caller. Collected fees are burned (sent to
the protocol burn address). The fee deters certificate spam and funds no treasury.

Payout address (normative): setPayoutAddress is authorized by the Shell Identity Key
(signature  over  keccak256(abi.encode(keccak256(bytes('GITS_SET_PAYOUT')), shell_id,
new_payout_address, nonce, chain_id))). Payout address changes take effect immediately for
future reward claims and epoch settlements.

Bond asset enforcement: registerShell MUST verify bond_asset is in the BondAssets allowlist
and MUST call ERC20(bond_asset) .transferFrom(msg.sender, address(this), bond_amount)
to collect the bond. Native-token (ETH) bonds are not accepted for sybil-resistance bonds.
revokeCertificate (normative): Authorization: callable only by the Shell Identity Key holder
(msg.sender matching the Shell’s registered identity key). State transitions: sets certificate_id =
bytes32(0) and certificate_expiry_epoch = 0, causing assuranceTier(shell_id) to return ATO
immediately. Any unexpired certificate fee is NOT refunded (fees are burned at setCertificate time).
Revert conditions: MUST revert if shell_id is not registered, or if no certificate exists. Interaction
with active sessions: existing sessions continue at the downgraded tier; tenure caps tighten via dynamic
T_cap evaluation (Section 10.4.4).

proposeldentityKeyUpdate / confirmIdentityKeyUpdate (normative): This two-step flow
implements timelocked key rotation for Shell Identity Keys. (1) proposeIdentityKeyUpdate:
authorized by the current Shell Identity Key. proof is a signature by the current identity
key over keccak256(abi.encode(keccak256(bytes("GITS_SHELL_KEY_PROPOSE")), shell_id,
new_identity_pubkey, nonce, chain_id)). Records the proposal with proposed_at =
current_epoch. MUST revert if a proposal is already pending. (2) confirmIdentityKeyUpdate:
callable by anyone after current_epoch >= proposed_at + T_shell_key_delay. Replaces the
identity key. During the timelock, the OLD key remains authoritative for all operations. MUST
revert if the timelock has not elapsed or no proposal exists.
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o proposeRecoveryKeyUpdate / confirmRecoveryKeyUpdate (normative): Safe Haven recovery key
rotation. Same two-step timelock flow as identity key updates. proposeRecoveryKeyUpdate is au-
thorized by the Shell Identity Key (not the recovery key itself). The recovery key is used only for
encryption (Shamir share distribution), not signing, so rotation does not affect in-flight recovery at-
tempts (those use the key that was current when shares were distributed). After confirmation, new
Shamir shares for any Ghost using this Safe Haven SHOULD be re-encrypted under the new recovery
key at the next checkpoint publication.

14.2 GhostRegistry (interfaces)
GhostRegistry anchors Ghost identity and recovery configuration.

Conceptual fields:

e ghost_id

o wallet (the Ghost smart wallet contract address)

« recoveryConfig (Recovery Set RS, threshold t, and rescue bounty parameters; Section 12)

o checkpoint pointers and commitments (Section 12.1)

 optional metadata (for indexers)

o registered_epoch (for age gates)

o optional Ghost reward bond state (for passport eligibility): bond_asset, bond_amount, unbond_end_epoch

Reference interface sketch:

interface IGhostRegistry {
function registerGhost(bytes32 ghost_id, bytes identity_pubkey, address wallet, bytes32 salt, Recover:

// Optional Ghost reward bond (passport bonus eligibility).

// Ghost bonds use hard assets from BondAssets allowlist via ERC20 transferFrom.

function bondGhost(bytes32 ghost_id, address asset, uint256 amount) external;

function beginUnbondGhost(bytes32 ghost_id, uint256 amount) external;

function finalizeUnbondGhost(bytes32 ghost_id) external;

function ghostPassportEligible(bytes32 ghost_id, uint256 epoch) external view returns (bool);

// Rotate the Ghost Identity Key / signer. Two call paths:
//  (a) Normal rotation: called by GhostWallet (msg.sender == wallet). proof is a

// signature by the current identity key over the rotation digest (wallet-verified).
//  (b) Recovery rotation: called internally by SessionManager.recoveryRotate().

// In this path, proof is empty - authorization comes from the RBC + AuthSig

// verification in recoveryRotate. Callers other than the wallet or SessionManager
// MUST be rejected.

// Identity key rotation does not change ghost_id. The derivation inputs
// (identity_pubkey, wallet, salt) are birth-time inputs captured at registration.
function rotateSigner(bytes32 ghost_id, bytes new_identity_pubkey, bytes proof) external;

function publishCheckpoint(
bytes32 ghost_id,
uint256 epoch,
bytes32 checkpointCommitment,
bytes32 envelopeCommitment,
bytes ptrCheckpoint,
bytes ptrEnvelope

) external;

function setRecoveryConfig(bytes32 ghost_id, RecoveryConfig recoveryConfig) external;

function getGhost(bytes32 ghost_id) external view returns (GhostRecord memory);

60



Notes:

o registerGhost MUST compute expected_id = keccak256(abi.encode(keccak256(bytes("GITS_GHOST_ID")),
identity_pubkey, wallet, salt)), store the record keyed by expected_id, and revert if the sup-
plied ghost_id does not match expected_id or if expected_id is already registered.

e Authorization: msg.sender MUST equal the wallet address provided in the registration call. This
ensures only the wallet contract itself (or its deployer via CREATE2) can register the Ghost, preventing
mempool front-running of registration transactions.

o Identity key authority linkage (normative): GhostRegistry.identity_pubkey is the
canonical source of truth for the Ghost’s current identity key. GhostWallet MUST wuse
GhostRegistry.identity_pubkey (or the derived address for K1 keys) as its authentication
root. When recoveryRotate rotates identity_pubkey to pk_new via GhostRegistry.rotateSigner,
the wallet’s authentication automatically follows — subsequent wallet operations MUST authenticate
against the new key. This linkage is what makes recovery effective: rotating the on-chain identity key
in GhostRegistry transfers wallet control to the recovered Ghost.

e publishCheckpoint authorization: msg.sender MUST equal the Ghost’s registered wallet address
(or an address explicitly authorized by the wallet’s policy). This prevents unauthorized parties from
overwriting checkpoint pointers.

e publishCheckpoint pointers (ptrCheckpoint, ptrEnvelope) are opaque bytes. They MAY encode
off-chain locations (IPFS CID, HTTPS URL, etc.) or on-chain locators (tx hash, log index, blob
reference) if the Ghost chooses on-chain checkpoint publication (Section 12.1.3). A deployment MAY
standardize pointer schemes for indexers and recovery agents.

14.3 GhostWallet (interfaces)

GhostWallet is an account-abstraction smart wallet that enforces Ghost execution policy (Section 5.5 (Part
1)) and mediates all protocol actions. Policy state includes destination gating (allowedShells plus optional
roaming permits) and spend limits (see Section 5.5.2 (Part 1)).

Reference interface sketch (conceptual):

interface IGhostWallet {
// Views
function getPolicy(bytes32 ghost_id) external view returns (Policy memory) ;
function homeShell(bytes32 ghost_id) external view returns (bytes32);
function isAllowedShell(bytes32 ghost_id, bytes32 shell_id) external view returns (bool);
function escapeReserve(bytes32 ghost_id) external view returns (uint256 escape_gas, uint256 escape_st
function hotAllowance(bytes32 ghost_id) external view returns (uint256);
function spentThisEpoch(bytes32 ghost_id) external view returns (uint256);

// Two-step policy changes (tightening immediate; loosening timelocked)

function proposePolicyChange(bytes32 ghost_id, PolicyDelta delta) external returns (bytes32 proposal_
function executePolicyChange(bytes32 ghost_id, bytes32 proposal_id) external;

function cancelPolicyChange(bytes32 ghost_id, bytes32 proposal_id) external;

// Tightening helpers
function removeTrustedShell (bytes32 ghost_id, bytes32 shell_id) external;
function removeAllowedShell (bytes32 ghost_id, bytes32 shell_id) external;

// Protocol actions (each validates wallet policy, then delegates to SessionManager)
function openSession(bytes32 ghost_id, bytes32 shell_id, SessionParams params) external;
function renewLease(bytes32 ghost_id) external;

function closeSession(bytes32 ghost_id) external;

function fundNextEpoch(bytes32 ghost_id, uint256 amount) external;

function startMigration(bytes32 ghost_id, bytes32 to_shell_id, bytes32 bundle_hash) external;
function cancelMigration(bytes32 ghost_id) external;
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function finalizeMigration(bytes32 ghost_id, bytes32 to_shell_id, bytes proof) external;

// Guardian management (encoded as policy changes for tightening/loosening rules)

// Adding guardians or increasing t_guardian = tightening (immediate).

// Removing guardians or decreasing t_guardian = loosening (timelocked + TEC).
function setGuardians(bytes32 ghost_id, bytes[] guardians, uint64 t_guardian) external;

// Recovery
function payRescueBounty(bytes32 ghost_id, uint64 attempt_id) external;
function exitRecovery(bytes32 ghost_id) extermal; // Section 12.3.1

Policy proposal semantics (normative):

Authorization model note: GhostWallet functions are called on the wallet contract, so msg.sender

is the caller (an EOA, EntryPoint, session key, or bundler), not the wallet’s own address. The authorization
rules below use “authenticated caller” to mean: the wallet’s internal validation logic has verified the caller
is authorized (e.g., identity key signature via validateUserOp for ERC-4337, direct EOA check for simple
wallets, or equivalent). Contrast with functions on other contracts (e.g., SessionManager.openSession)
where authorization is msg.sender == wallet_address — in those cases the wallet itself is the caller.

o proposePolicyChange: Authorization: authenticated caller (the wallet’s internal auth logic
verifies the identity key controls the call). Stores (proposal_id, delta, proposed_at_epoch,
eta_epoch) where eta_epoch = proposed_at_epoch + POLICY_TIMELOCK and proposed_at_epoch
= current_epoch(). Returns (proposal_id, eta_epoch).

o executePolicyChange: Authorization: authenticated caller AND the call MUST originate from a
Trusted Execution Context (Section 5.5.2 (Part 1)). Requires current_epoch() >= eta_epoch. For
critical loosening deltas, it additionally requires homeShell presence or Guardian co-signatures (see
below).

o cancelPolicyChange: Authorization: authenticated caller OR a Guardian with a valid EIP-712
cancellation signature. Cancellation is immediate and does not require TEC. This dual authorization
ensures that (a) the Ghost can cancel its own proposals, and (b) Guardians can veto proposals during
the timelock window if the Ghost’s session key is compromised.

e Concurrency: at most one pending loosening proposal per ghost_id at a time. A new
proposePolicyChange while a proposal is pending MUST overwrite the previous proposal (the
old proposal is implicitly cancelled). This prevents unbounded proposal queues and simplifies
reasoning about combined policy effects.

o Post-state validation: executePolicyChange MUST verify that the resulting policy state (after
applying delta) still satisfies all hard wallet invariants (Section 5.5.4 (Part 1)). If applying the delta
would violate any invariant, the execution MUST revert.

Notes:

e openSession, startMigration, and finalizeMigration MUST enforce destination gating
(allowedShells plus any explicitly granted roaming permits) (Section 5.5.2 (Part 1)). startMigration
MUST enforce the same destination predicate as openSession to prevent staging a migration to a
disallowed Shell.

¢ Outside a Trusted Execution Context, the wallet MUST NOT expose an unrestricted “execute arbitrary
call” surface. If an AA-compatible generic execute entrypoint exists, it MUST enforce an allowlist at
(target contract, function selector) granularity and MUST forbid delegatecall entirely.

o ERC20 approvals are a common footgun. The wallet SHOULD prefer transfer over approve. If
approvals are unavoidable on a given chain, approvals MUST be exact, single-purpose, and limited to
known protocol contracts (and SHOULD be reset to zero after use where the token allows).

Critical loosening (normative): The following policy changes are classified as critical loosening

and MUST require, in addition to the standard TEC + timelock, either (a) homeShell presence (the active
session is on homeShell) or (b) t_guardian-of-n_guardian Guardian co-signatures:
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e adding to allowedShells or trustedShells

« enabling or extending roaming permits (increasing expiry/hops or loosening roam_policy)
« lowering an escape reserve floor (escapeGas or escapeStable)

e increasing hot_allowance above HOT_CRITICAL_THRESHOLD

o changing the Recovery Set RS (adding Safe Havens)

If neither homeShell presence nor sufficient Guardian co-signatures are available, the wallet MUST reject
the executePolicyChange call for any critical loosening delta.

Guardian specification (normative): Wallets that support critical loosening MUST implement a
Guardian mechanism:

o guardians[] (set of guardian public keys) and t_guardian (quorum threshold) are stored in
GhostWallet policy state.

e Guardian signatures use EIP-712 typed data with domain (name: "GhostWallet", version:
"1", chainld, verifyingContract) and a CriticalLoosening(bytes32 ghost_id, bytes32
proposal_id, bytes32 delta_hash) type hash.

o executePolicyChange for critical loosening deltas MUST verify t_guardian valid unique Guardian
signatures over the proposal’s delta_hash.

o Guardian rotation: adding guardians or increasing t_guardian is tightening (immediate); removing
guardians or decreasing t_guardian is loosening (timelocked + TEC). setGuardians is a convenience
method that classifies the change and routes through the appropriate policy path internally.

o Wallets that do not configure any Guardians MUST require homeShell presence for all critical loosen-
ing.

Censorship-resistant renewal and relayed transactions (normative): GhostWallet MUST sup-
port at least one meta-transaction path (ERC-4337 UserOperation validation or ERC-2771 trusted for-
warder) to enable censorship-resistant lease renewals and other time-critical actions. The wallet’s signature
verification in the meta-tx path MUST enforce the same policy constraints (destination gating, spend lim-
its, escape reserves) as direct calls. Implementations SHOULD expose validateUserOp(UserOperation,
bytes32, uint256) per ERC-4337 if the target chain supports an EntryPoint contract.

o startRecovery is intentionally not exposed through GhostWallet: Safe Havens call SessionManager.startRecovery(.
directly (after lease/tenure expiry). The Ghost itself interacts with recovery via exitRecovery and
via the effects of recoveryRotate.

o Recovery Set changes (call path): Changing the Recovery Set RS is classified as crit-

ical loosening (above). The on-chain call path is: GhostWallet’s executePolicyChange
validates the critical loosening conditions (TEC + homeShell or Guardian co-signatures),
then calls GhostRegistry.setRecoveryConfig(ghost_id, new_config). The PolicyDelta

struct’s roaming_config field (opaque bytes) encodes RS changes; implementations MUST
decode this field to extract the new RecoveryConfig and route the call to GhostRegistry.
GhostRegistry.setRecoveryConfig MUST verify msg.sender == wallet_address for the given

ghost_id.
o payRescueBounty authorization (normative): payRescueBounty is callable ONLY by
SessionManager (specifically, as an internal call during recoveryRotate). MUST revert if

msg.sender != address(sessionManager). MUST revert if the Ghost is not in RECOVERY_LOCKED
or RECOVERY_STABILIZING mode, or if the attempt has already been paid out. The function decreases
bounty_escrow_remaining by the total payout amount, adjusting the escape reserve floor in lockstep
(Section 10.0, escape reserve invariants).

14.4 SessionManager (interfaces)

SessionManager tracks session state, leases, residency/tenure, and trust-refresh (Sections 10.3 and 10.4).

Conceptual state per ghost_id:

o session state (NORMAL / STRANDED / RECOVERY)
e active shell_id
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lease_expiry_epoch

last_trust_refresh_epoch

residency tracking: residency_shell_id, residency_start_epoch, residency_tenure_limit_epochs

passport tracking: rotating Bloom filters per ghost_id (default) or an exact last_open_epoch[ghost_id] [shell_id]
mapping, plus a per-session persisted passport_bonus_applies bit computed at openSession using

new_visit, shell_passport_eligible, and ghost_passport_eligible; Bloom insert occurs at

openSession (not deferred to recordReceipt) to prevent double-claim (Part 2, Section 7.6.2)

dwell counter tracking: dwell_last_epoch[ghost_id] [shell_id] for close/reopen anti-gaming (Sec-

tion 10.4.4)

Bloom filter rotation (normative): Filters rotate every C_passport / B_passport_filters epochs.

Rotation SHOULD use lazy-clear: at openSession, check whether the oldest filter’s rotation epoch has
passed; if so, zero it and advance the active filter index. Multi-step catch-up: if multiple rotation windows
have passed since the last openSession (e.g., the Ghost was inactive for a long time), the implementation
MUST advance through all missed rotation windows in a single openSession call, clearing one filter per win-
dow. The worst case is B_passport_filters clearings (one per filter, after which all filters are fresh), which
is bounded by a small constant (e.g., 4) and costs at most B_passport_filters * ceil (BLOOM_M_BITS /
256) SSTORE operations. After catch-up, every filter is cleared and the Ghost starts with a clean passport
state — equivalent to a fresh registration for passport purposes. This amortizes the clear cost across session
opens rather than requiring a standalone rotation transaction. If no sessions are opened for a Ghost during
a rotation window, the stale filter persists until the next openSession, which is safe (conservative: it may
produce false positives that deny deserved passport bonuses, but never false negatives that grant undeserved
ones).

Reference interface sketch:

interface ISessionManager {
function openSession(bytes32 ghost_id, bytes32 shell_id, SessionParams params) external;
function renewLease(bytes32 ghost_id) external;
function closeSession(bytes32 ghost_id) external;
function fundNextEpoch(uint256 session_id, uint256 amount) external; // GhostWallet only
function settleEpoch(uint256 session_id, uint256 epoch, uint256 su_delivered) external; // ReceiptMa

function startMigration(bytes32 ghost_id, bytes32 to_shell_id, bytes32 bundle_hash) external;
function cancelMigration(bytes32 ghost_id) external; // clears pending migration, closes staging ses:
function finalizeMigration(bytes32 ghost_id, bytes32 to_shell_id, bytes proof) external;

// Recovery (B_start posted via msg.value in native token)
function startRecovery(bytes32 ghost_id) external payable returns (uint64 attempt_id);
function recoveryRotate(

)

bytes32 ghost_id,

uint64 attempt_id,

bytes new_identity_pubkey,

RBC rbc, // Recovery Boot Certificate (Section 12.3)

bytes32[] calldata rs_list, // full Recovery Set snapshot (verified against attempt.rs_hash)
AuthSig[] calldata sigs, // t-of-n Recovery Set signatures (Section 12.3)

ShareReceipt[] calldata share_receipts // Safe Haven secret-share attestations

external;

function expireRecovery(bytes32 ghost_id) external;
function takeoverRecovery(bytes32 ghost_id) external payable; // after T_recovery_takeover (Section

function exitRecovery(bytes32 ghost_id) external;

// Safe Haven equivocation proof (permissionless). Verifies two conflicting recovery
// authorizations for the same (ghost_id, attempt_id) but different pk_new, then calls
// ShellRegistry.slashSafeHaven internally. See Section 10.1.1 and 12.5.1.
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function proveSafeHavenEquivocation(

bytes32 shell_id,

bytes32 ghost_id,

uint64 attempt_id,

bytes32 checkpoint_commitment,

bytes  pk_new_a, // pk_new from first authorization
bytes sig_a, // Shell Identity Key signature over auth_digest with pk_new_a
bytes  pk_new_b, // pk_new from second authorization (must differ from pk_new_a)
bytes sig_b // Shell Identity Key signature over auth_digest with pk_new_b
) external;
// Views

function getSession(bytes32 ghost_id) external view returns (SessionState memory);
function getSessionById(uint256 session_id) external view returns (SessionState memory);

function

function effectiveTenureExpiry(bytes32 ghost_id) external view returns (uint256);

function isRefreshAnchor (bytes32 ghost_id, bytes32 shell_id) external view returns (bool); // Sectio:

// Used by ShellRegistry to enforce Safe Haven unbonding guard (Section 14.1).

function isActiveRecoveryInitiator(bytes32 shell_id) external view returns (bool);

// Optional: explicit lazy-evaluation trigger (Section 10.4.3). Implementations MAY omit.
function processExpiry(bytes32 ghost_id) external;

// Events

event SessionOpened(bytes32 indexed ghost_id, bytes32 indexed shell_id, uint256 session_id);
event SessionClosed(bytes32 indexed ghost_id, bytes32 indexed shell_id, uint256 session_id);
event LeaseRenewed(bytes32 indexed ghost_id, uint256 new_expiry_epoch);

event
event

event MigrationCancelled(bytes32 indexed ghost_id);

event RecoveryStarted(bytes32 indexed ghost_id, uint64 attempt_id, bytes32 initiator_shell_id);
event RecoveryRotated(bytes32 indexed ghost_id, uint64 attempt_id);

event RecoveryExpired(bytes32 indexed ghost_id, uint64 attempt_id);

event RecoveryExited(bytes32 indexed ghost_id);

event ModeChanged(bytes32 indexed ghost_id, uint8 old_mode, uint8 new_mode);

event NoAnchorsConfigured(bytes32 indexed ghost_id); // emitted when Ghost has no refresh anchors

Enforcement highlights:

renewLease MUST enforce lease expiry, tenure expiry (derived), and trust-refresh (Section 10.4.1).
Tenure expiry is derived from current tier and is not a fixed stored timestamp (Section 10.4.4).
cancelMigration clears pending_migration, closes the staging destination session (refunding unused
escrow), and returns the mode to NORMAL (or STRANDED if expiry already holds). See Section 10.4.5.
startRecovery MUST require msg.value >= B_start (native token bond). Excess msg.value is
returned to the caller. See Section 12.3 for full preconditions.

exitRecovery TEC check: The Trusted Execution Context predicate (Section 5.5.2 (Part 1)) requires
that the active session’s Shell satisfies at least one of: (1) assuranceTier(shell_id) >= AT3 with a
valid certificate, (2) shell_id trustedShells, or (3) shell_id == homeShell. This is the same
canonical TEC predicate used for all loosening paths. Implementations MUST evaluate all three
conditions.

Staging session handling: startMigration internally opens a new session on to_shell_id with
staging = true. Staging sessions MUST NOT accrue SU or be reward-eligible. ReceiptManager

MUST reject receipts for any session_id with staging = true by calling SessionManager.getSessionById(session

and checking the staging field. finalizeMigration atomically promotes the staging session to active
and closes the old session.
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o Per-session-id views (normative): getSessionById(session_id) returns the full SessionState
for a given session__id (including staging, assurance_tier_snapshot, residency_start_epoch_snapshot).
getSessionKeys(session_id) returns the session’s ghost_session_key, shell_session_key, and
submitter_address as stored at openSession time. These views exist to support cross-contract callers:
ReceiptManager uses getSessionById for staging checks and session validity, and getSessionKeys
for fraud proof signature verification (Section 10.5.4). Both views MUST revert if session_id is
unknown.

o Censorship-resistant renewal (normative): renewLease is the protocol-level renewal function.
GhostWallet exposes it to meta-transaction paths (ERC-4337 UserOperation or ERC-2771 trusted
forwarder) as described in the GhostWallet notes (Section 14.3). The protocol does not define a separate
renewLeaseWithSig function; instead, the meta-tx path through GhostWallet provides the censorship-
resistant renewal mechanism. Implementations that do not support ERC-4337 MUST support an
equivalent relayer path (Section 5.5.6 (Part 1)).

o Events (normative): SessionManager MUST emit the declared events on the corresponding state
transitions. NoAnchorsConfigured MUST be emitted when a Ghost has no refresh anchors configured
at openSession time (Section 10.4.1), enabling off-chain monitoring to alert the Ghost before trust-
refresh failure.

14.5 ReceiptManager (interfaces)

ReceiptManager accepts receipt candidates, resolves disputes, finalizes receipts, and triggers settle-
ment/reward accounting (Section 10.5).

Reference interface sketch:

interface IReceiptManager {
// Candidate includes: (log_root, SU_delivered, optional log_ptr, submitter metadata).
function submitReceiptCandidate(uint256 session_id, uint256 epoch, ReceiptCandidate candidate) extern

// Standard fraud proof challenge (Section 10.5.4).
function challengeReceipt(uint256 session_id, uint256 epoch, FraudProof proof) external payable;

// Data availability challenge: forces publication of the epoch log for a candidate (Section 10.5.6).
function challengeReceiptDA(uint256 session_id, uint256 epoch, uint256 candidate_id) external payable
function publishReceiptLog(uint256 session_id, uint256 epoch, uint256 candidate_id, bytes calldata en
function resolveReceiptDA(uint256 session_id, uint256 epoch, uint256 candidate_id) external; // time

function finalizeReceipt(uint256 session_id, uint256 epoch) external;
function getFinalReceipt(uint256 session_id, uint256 epoch) external view returns (FinalReceipt memor:

// 0(1) view: number of unresolved DA challenges for a given epoch (across all sessions).

// Used by RewardsManager to gate finalizeEpoch (Section 14.6).

// Incremented on challengeReceiptDA, decremented on resolveReceiptDA/publishReceiptLog success.
function pendingDACount(uint256 epoch) external view returns (uint256);

finalizeReceipt(session_id, epoch) MUST revert unless all of the following are true:

1. The submission window has closed: current_epoch >= epoch + 1 + SUBMISSION_WINDOW.

2. The challenge window has expired: current_epoch >= window_end_epoch for this (session_id,
epoch).

3. No unresolved DA challenge exists: da_pending = false. (If da_pending = true and current_epoch
>= da_deadline_epoch, finalizeReceipt MUST first resolve the DA timeout — disqualifying the
candidate and slashing its bond — before proceeding.)

On successful finalizeReceipt, the implementation MUST:
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o select the highest-ranked non-disqualified candidate (or settle as SU_delivered = O if all candidates
were disqualified or no candidate was submitted),

« validate that the session was active and billable for that epoch (Section 10.5.2 session validity checks:
session_start_epoch <= epoch, epoch < session_end_epoch, epoch < effective_expiry_epoch
using time-of-service assurance tier per Section 10.5.2 tenure-tier snapshot rule, lease valid at time of
service, not in pending-migration staging). If invalid, settle as SU_delivered = 0.

o call SessionManager.settleEpoch(session_id, epoch, SU_delivered) to move funds (rent to
Shell payout, refund to GhostWallet) and mark the epoch settled, and

o call RewardsManager.recordReceipt(...) so rewards can be computed incrementally (Section 7.6.4
(Part 2)).

o Bond return (normative): return B_receipt to the winning candidate’s submitter. For any non-
disqualified, non-evicted runner-up candidates that did not win, return their B_receipt as well. Dis-
qualified candidates’ bonds are handled by the fraud proof / DA timeout path (slashed). Evicted
candidates’ bonds are returned immediately at eviction time (Section 10.5.2).

No-candidate and timeout finalization (normative): After the maximum dispute duration has
elapsed (current_epoch >= epoch + 1 + T_max, where T_max is derived in Section 10.5.7), anyone MAY
call finalizeReceipt (session_id, epoch). If no candidate was submitted, or all candidates were disqual-
ified, finalizeReceipt MUST set SU_delivered = 0 and settle by refunding 100% of that epoch’s escrow
to GhostWallet via settleEpoch. This prevents escrow from being stranded indefinitely.

finalizeReceipt uses MUST (not SHOULD) because skipping settlement or reward recording on final-
ization would leave the system in an inconsistent state where a receipt is “finalized” but its economic effects
are absent.

14.6 RewardsManager (interfaces)
RewardsManager tracks per-epoch aggregates and distributes emissions (Section 7.6.4 (Part 2)).

Reference interface sketch:

interface IRewardsManager {
// Called by ReceiptManager on finalized receipts (0(1) updates).
function recordReceipt(
bytes32 receipt_id,
uint256 epoch,
bytes32 ghost_id,
bytes32 shell_id,
uint32 su_delivered,
uint256 weight_q // fixed-point weight
) external;

// Called after EPOCH_FINALIZATION_DELAY + FINALIZATION_GRACE.
// MUST revert if ReceiptManager.pendingDACount(epoch) > O (Section 10.6).
function finalizeEpoch(uint256 epoch) external;

function claimReceiptRewards(bytes32 receipt_id) external;

// Storage pruning (Section 10.7). Implementations SHOULD expose these; MAY omit if using lazy deleti
function pruneEpoch(uint256 epoch) external;
function pruneReceipt(bytes32 receipt_id) external;

finalizeEpoch DA guard (normative): finalizeEpoch(e) MUST call ReceiptManager.pendingDACount (e)
and revert if the result is non-zero. This replaces the prior requirement to “check all sessions for da_pending”
with an O(1) counter-based check, making it implementable without iteration.

finalizeEpoch vs finalizeReceipt ordering (normative): If both finalizeEpoch(e) and
finalizeReceipt(session_id, e) become callable in the same block, the following rule applies:
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finalizeEpoch(e) MUST be gated by current_epoch >= e + 1 + EPOCH_FINALIZATION_DELAY +
FINALIZATION_GRACE, and EPOCH_FINALIZATION_DELAY + FINALIZATION_GRACE > T_max + 1 (stricter
than the base constraint). This ensures all receipts for epoch e have had time to finalize and call
recordReceipt before finalizeEpoch becomes callable, removing ordering dependence within a block.
Any receipt that has not called recordReceipt by the time finalizeEpoch(e) executes is treated as if it
were a late receipt (zero emissions, rent still settles).

14.7 VerifierRegistry (interfaces)

This registry maintains the active verifier set used for threshold-signed Attestation Certificates and Recovery
Boot Certificates (Section 2.3 (Part 1) and Section 12.3).

A deployment SHOULD specify the verifier staking asset(s) at genesis:

o asset_verifier_stake (typically a stable asset, required for zero-premine bootstrapping)
« optionally GIT (dual staking)

Reference interface sketch (conceptual):

interface IVerifierRegistry {
event VerifierRegistered(address indexed verifier, address asset, uint256 amount);
event StakelIncreased(address indexed verifier, address asset, uint256 amount);
event StakeDecreaseBegun(address indexed verifier, address asset, uint256 amount, uint256 available_e;
event StakeWithdrawn(address indexed verifier, address asset, uint256 amount);
event VerifierSlashed(address indexed verifier, address asset, uint256 amount, bytes32 reason);
event MeasurementAllowed(bytes32 indexed measurement_hash, uint8 tier_class);
event MeasurementRevoked(bytes32 indexed measurement_hash) ;

// --- Verifier staking ---

function registerVerifier(address asset, uint256 amount) external;
function increaseStake(address asset, uint256 amount) external;
function beginDecreaseStake(address asset, uint256 amount) external;
function withdrawDecreasedStake(address asset) external;

// Slashing is restricted to protocol-authorized callers (e.g., ShellRegistry for certificate fraud)
// or triggered internally by proveVerifierEquivocation.
function slashVerifier(address verifier, address asset, uint256 amount, bytes32 reason) external;

// Permissionless equivocation proof: anyone can submit two conflicting certificate signatures
// from the same verifier for the same shell_id with overlapping validity windows.
// Verifies both signatures are valid and that the certificates conflict (different ac_digest
// for same shell_id with overlapping [valid_from, valid_to]).
// On success: slashes the verifier's stake and pays bps_verifier_challenger_reward to msg.sender.
function proveVerifierEquivocation(
address verifier,
bytes32 shell_id,

bytes calldata ac_payload_a, // abi.encode(shell_id, tee_type, ...) for certificate A
bytes calldata sig_a, // verifier's signature over ac_digest_a
bytes calldata ac_payload_b, // abi.encode(shell_id, tee_type, ...) for certificate B
bytes calldata sig_b // verifier's signature over ac_digest_b

) external;

// —-—— Measurement allowlist (Section 2.3.5 (Part 1)) --—-

// Adding a measurement is a loosening action: requires supermajority quorum (see notes for threshold
// tier_class: 0 = Confidential Shell, 1 = Safe Haven (stricter, latest patched only).

function allowMeasurement(bytes32 measurement_hash, uint8 tier_class, uint64 nonce, bytes[] calldata

// Revoking a measurement is a tightening action: takes effect immediately with standard quorum (see
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function revokeMeasurement (bytes32 measurement_hash, uint64 nonce, bytes[] calldata sigs_verifiers) e:

// —— Views —---

function isActiveVerifier(address verifier) external view returns (bool);

function stakeScore(address verifier) external view returns (uint256);

function activeStake(address verifier, address asset) external view returns (uint256);

function isMeasurementAllowed(bytes32 measurement_hash, uint8 tier_class) external view returns (bool

Notes:

e Verifiers are identified by their EVM address. Certificate signatures MUST be produced by the
secp256kl (K1) key corresponding to the registered address. Verifier key rotation requires register-
ing a new address and migrating stake; there is no in-place key rotation for verifiers.

e Measurement management (normative): The MeasurementRegistry described in Part 1
Section 2.3.5 is embedded in VerifierRegistry. ShellRegistry.setCertificate MUST call
VerifierRegistry.isMeasurementAllowed(measurement_hash, tier_class) to validate that the
measurement is currently allowed for the claimed assurance tier. Safe Haven admission additionally
requires isMeasurementAllowed(measurement_hash, 1) (tier_class 1 = Safe Haven). Safe Haven
status is automatically suspended if the Shell’s measurement leaves the Safe Haven allowlist (Section
2.3.5 (Part 1)).

o Active set (normative): The active verifier set is the top K_v verifiers by stakeScore. K_v and
K_v_threshold are deployment constants. Certificate acceptance requires K_v_threshold signatures
from active-set verifiers. Tie-break rule: when multiple verifiers have equal stakeScore at the K_v
boundary, the verifier with the lower EVM address (numerically) is ranked higher. Recomputation
cadence: the active set is recomputed at every read (i.e., every setCertificate, allowMeasurement,
or revokeMeasurement call that checks quorum membership). There is no epoch-boundary snapshot;
stake mutations take effect immediately for active-set membership. This is consistent with the rule
that beginDecreaseStake reduces stakeScore immediately (below).

o stakeScore formula (normative): For vl single-asset deployments, stakeScore(verifier) =
activeStake(verifier, asset_verifier_stake) — the verifier’s activated stake in the designated
staking asset (i.e., stake that has passed the T_stake_activation delay). This is a simple single-asset
model with no oracle dependency. Dual-staking deployments (e.g., stable + GIT) MAY define a
deployment-specific composite score, but the on-chain quorum check always counts distinct signatures
(not stake weight). During beginDecreaseStake, stakeScore decreases immediately (not at finalize),
so the verifier may lose active-set membership before withdrawal completes.

e Quorum thresholds (normative): K_v_supermajority = ceil(2 * K_v / 3) — the number of
active-set verifier signatures required for allowMeasurement (loosening action). K_v_threshold is the
standard quorum used for certificate acceptance and revokeMeasurement (tightening action). Both
thresholds are concrete integer signature counts, consistent with the on-chain model (Section 10.0
parameter constraints). The whitepaper’s references to “supermajority” and “standard quorum” map
to these two thresholds respectively.

o Measurement management signing digests (normative): Each sigs_verifiers[i] entry
MUST be a signature over a domain-separated digest. The nonce parameter is a per-registry
monotonic counter incremented on each successful allowMeasurement or revokeMeasurement call,
providing replay protection. Digests:

— allowMeasurement: allow_digest = keccak256(abi.encode(keccak256(bytes("GITS_ALLOW_MEASUREMENT")
chain_id, verifier_registry_address, measurement_hash, tier_class, nonce))

— revokeMeasurement: revoke_digest = keccak256(abi.encode(keccak256(bytes("GITS_REVOKE_MEASUREMEN
chain_id, verifier_registry_address, measurement_hash, nonce))

— sigs_verifiers[] MUST be sorted by signer address (ascending) and contain no duplicates,
matching the setCertificate convention. The contract recovers each signer via ecrecover and
verifies active-set membership.
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 Verifier equivocation proof (normative): proveVerifierEquivocation is permissionless (callable
by any address) and verifies that a verifier signed two conflicting Attestation Certificates for the
same shell_id with overlapping validity windows. “Conflicting” means the two certificates pro-
duce different ac_digest values (per Section 14.1 AC signing digest) but both have valid_from_a
< valid_to_b AND valid_from_b < valid_to_a (overlapping intervals). The contract MUST: (1)
recompute ac_digest_a and ac_digest_b from the provided payloads, (2) recover the signer from each
signature via ecrecover and verify both equal verifier, (3) verify both certificates reference the same
shell_id, (4) verify the validity windows overlap, (5) verify the digests differ. On success, the verifier’s
full stake is slashed. The challenger (msg.sender) receives bps_verifier_challenger_reward basis
points of the slashed amount; the remainder is burned. This implements the objective slashing path
described in Section 2.3.6 (Part 1).

» Stake lifecycle (normative): registerVerifier creates a new verifier record and posts initial stake
via ERC20.transferFrom. increaseStake adds to an existing verifier’s stake. beginDecreaseStake
records a pending decrease: stakeScore decreases immediately (Section 14.7, stakeScore formula), and
available_epoch = current_epoch + T_stake_unbond is stored (emitted in StakeDecreaseBegun).
withdrawDecreasedStake MUST revert if current_epoch < available_epoch; on success, transfers
the decreased amount back to the verifier. MUST revert if no pending decrease exists. slashVerifier
is callable only by authorized protocol contracts (ShellRegistry for certificate-related penalties,
or internally by proveVerifierEquivocation). The reason parameter is an opaque bytes32
tag for indexing; it does not affect slash amount or beneficiary. The full amount is transferred:
bps_verifier_challenger_reward to the challenger (if triggered by equivocation proof; otherwise
burned), remainder burned to the protocol burn address.

o Stake activation delay (normative): New stake (via registerVerifier or increaseStake)
MUST NOT count toward stakeScore or active-set eligibility until a deployment-constant delay
T_stake_activation epochs have elapsed. This prevents flash-loan or short-lived stake spikes from
capturing quorum positions. The delay SHOULD be at least EPOCH_FINALIZATION_DELAY epochs to
ensure that any certificate signed during the staking period has its dispute window close before the
stake can be withdrawn. Without this delay, an attacker could borrow capital, enter the active set,
sign a malicious certificate, and exit within one transaction.

View function behavior (general, normative): All get* and query view functions in Sections
14.1-14.7 MUST revert if the queried identifier (shell_id, ghost_id, session_id, receipt_id, verifier
address) does not correspond to a registered entity. Implementations MUST NOT return zeroed structs for
unknown IDs, as this creates ambiguity between “unregistered” and “registered with default values.” Boolean
views (isActiveVerifier, isMeasurementAllowed, isStaging, etc.) MAY return false for unknown IDs
without reverting, as the result is unambiguous.

14.9 Test vectors (hashes and signing digests)

Purpose: allow independent implementations to verify that they compute identical digests for signed mes-
sages.

All vectors assume Section 4.5.3 (Part 1):

e H(x) = keccak256(x)

e H("TAG" || chain_id || field_1 || ...) means keccak256(abi.encode(TAG_HASH, chain_id,
field_1, ...))

e TAG_HASH = keccak256(bytes("TAG"))

e chain_id, session_id, epoch, attempt_id, interval_index are uint256 (32-byte big-endian)

e ghost_id, checkpoint_commitment, shell_id are bytes32

Vector A: Heartbeat digest Inputs:

e TAG = "GITS_HEARTBEAT"

e TAG_HASH = 0x79f3a1c02ce8092087b1229f734556ce9d5886b412f39e9e13653520d21a8£30
e chain_id = 8453

e session_id = 123456789
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e epoch = 42
e interval_index = 17

Expected:

e HB = 0x346279e72db9£82fa31c03c8£ab3278£83b2797b4cdd9b7a2ba879f4bc9da621

Vector B: Share receipt digest Inputs:

e TAG = "GITS_SHARE"

o TAG_HASH = 0x0£585af21ff7£28eb5d968fdcddf0d555a846e2ed37££53dda9214ae28900e04

e chain_id = 8453

e ghost_id = 0x7£36bb45ealffl17cdefald9cae3247c526985b0c14c8903be7b354961ad89123

e attempt_id = 3

e checkpoint_commitment = 0x5b31a77e397fbe08a819b514a2f468be97009d2c4210a159b74d4b9a6fd6£4d9

Expected:

e H share = 0x1495176acbec25d185a38362f71cbc05d21ab88abfbbffeebff£202cc48cceb7

Vector C: Share ack digest Inputs:

e TAG = "GITS_SHARE_ACK"

e TAG_HASH = Oxaff245e7cf289589c58f50746424ad2c71b5717a7e635086811cd93d86a77582
e chain_id = 8453
e ghost_id = 0x7£36bb45eal0ff17cdefa9d9cae3247c526985b0c14c8903be7b354961ad89123

e attempt_id = 3
¢ checkpoint_commitment = 0x5b31a77e397fbe08a819b514a2f468be97009d2c4210a159b74d4b9ab6fd6£4d9
e shell_id_j = 0xde00a0f376943b7461641517e69ae49a6c5161c3e05fc28£5c14£154b551c79¢c

Expected:

e H_share_ack = 0x734b462d3e98bd28040d76cdc724ee8217204£fb476b8cd1522a641436b057b35

Vector D: Receipt leaf hash (Merkle-sum leaf) Inputs:

e TAG = "GITS_LOG_LEAF"

e TAG_HASH = 0x£6294a134bf83bf27e2d5ab64e3bcfcebb373e74cedf22e996eba267a3db88fee
e chain_id = 8453

e session_id = 123456789

e epoch = 42

e interval_index = 17

e v_i=1

e sig_ghost_i
e sig_shell_ i

0x0102030405060708090a0b0c0d0e0£101112131415161718191a1blc1d1e1£20212223242526272829:
0x65666768696a6b6c6d6e6£707172737475767778797a7b7c7d7e7£808182838485868788898a8b8c8d!

Intermediate:

0x752e968b7£3a77a413a39f£ce9£0940703720b705679a9617e303£591a695b30
0xd763f1b001827c81£d63e0481fab326731ad2f2bdc2e61458e10cfc430a7£e00

e H(sig_ghost_i)
o H(sig_shell_i)

Expected:

e leaf_hash_i = 0x3bd00£dcc06781ca996db6dfb070370eaf44b54b2e53e15bab3af9cbba%adc4b

Definition:

e leaf_hash_i = keccak256(abi.encode(TAG_HASH, chain_id, session_id, epoch, uint32(interval_index),
uint8(v_i), H(sig_ghost_i), H(sig_shell_i)))
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Vector E: Receipt node hash (Merkle-sum internal node) Inputs:

e TAG = "GITS_LOG_NODE"

e TAG_HASH = 0x8ff17f274aafeacb48bcc81cc0419089924a701538706d5eed0f7bac62e98cab

e chain_id = 8453

e session_id = 123456789

e epoch = 42

e Left child: hL = 0x3bd00fdcc06781ca996db6dfb070370eaf44b54b2e53e15bab3af9cb5a9adc4b, sL

=1

o Right child is leaf (interval_index = 18, v_i = 0, sigs empty):
— H(sig_empty) = 0xc5d2460186£7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470
— leaf_hash_18 = Oxeea8fec70a6cc83£8921b68392f325c83995bdeledb3ba04b94003adbc06b3aa,

sR =0

Expected:

e node_hash = 0x43b9228b9e0b50ae2cd9318bce993781b6cae6d741785b619af56441008097ff
e node_sum = 1

Definition:

e node_hash = keccak256(abi.encode(TAG_HASH, hL, hR, uint32(sL), uint32(sR)))
e node_sum = sL + sR

Vector F: Mini receipt root (N_PAD = 4) Inputs:

e chain_id = 8453
e session_id = 123456789
e epoch = 42
. N_PAD =4
o Leaves (i from 0 to 3):
—1i=0:v_i=1, sig_ghost = 0x0102030405060708090a0b0c0d0e0£101112131415161718191alblcldlel1£2021
sig_shell = 0x65666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7£808182838485868788898a8b8c:
—1i=1:v_i = 0, sig_ghost = 0x, sig_shell = 0Ox
—1i=2:v_i =1, sig_ghost = 0x222222222222222222222222222222222222222222222222222222222222222222
sig_shell = 0x33333333333333333333333333333333333333333333333333333333333333333333333333333333
—1i=3:v_i=0,sig_ghost = 0x, sig_shell = Ox

Expected:
e log_root = 0xb7b7c48afe3c285065c£61d09b7eb454e18eb51bed622e22ad2f£758a1b0£f7c2a
e SU_delivered = 2

Vector G: Ghost ID derivation Inputs:

o identity_pubkey = abi.encode(uint8(1), abi.encode(address(0x11111111111111111111111111111111111112¢
(K1 key)

e wallet = address(0x2222222222222222222222222222222222225678)

e salt = bytes32(0x0000000000000000000000000000000000000000000000000000000000000001)

e tag_hash = keccak256(bytes("GITS_GHOST_ID"))

Derivation:
e ghost_id = keccak256(abi.encode(tag_hash, identity_pubkey, wallet, salt))

Definition:
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o identity_pubkey is encoded per the canonical identity key encoding (Section 14.1): abi.encode(uint8(sig_alg),
pk_bytes) where K1 uses sig_alg = 1 and pk_bytes = abi.encode(address).

Vector H: Shell ID derivation Inputs:

e identity_pubkey = abi.encode(uint8(1), abi.encode(address(0x3333333333333333333333333333333333339A!
(K1 key)

e salt = bytes32(0x0000000000000000000000000000000000000000000000000000000000000002)

e tag_hash = keccak256(bytes("GITS_SHELL_ID"))

Derivation:
e shell_id = keccak256(abi.encode(tag_hash, identity_pubkey, salt))
Definition:

o identity_pubkey is encoded per the canonical identity key encoding (Section 14.1): abi.encode(uint8(sig_alg),
pk_bytes) where K1 uses sig_alg = 1 and pk_bytes = abi.encode(address).
e Note: payout_address is NOT an input to shell_id derivation. It is stored as mutable state in
ShellRegistry.
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